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Abstract
The potential advantages of optics at high link speeds
have led to significant interest in deploying optical
switching technology in data-center networks. Initial
efforts have focused on hybrid approaches that rely on
millisecond-scale circuit switching in the core of the
network, while maintaining the flexibility of electrical
packet switching at the edge. Recent demonstrations of
microsecond-scale optical circuit switches motivate con-
sidering circuit switching for more dynamic traffic such
as that generated from a top-of-rack (ToR) switch. Based
on these technology trends, we propose a prototype hy-
brid ToR, called REACToR, which utilizes a combina-
tion of packet switching and circuit switching to appear
to end-hosts as a packet-switched ToR.

In this paper, we describe a prototype REACToR con-
trol plane which synchronizes end host transmissions
with end-to-end circuit assignments. This control plane
can react to rapid, bursty changes in the traffic from
end hosts on a time scale of 100s of microseconds, sev-
eral orders of magnitude faster than previous hybrid ap-
proaches. Using the experimental data from a system of
eight end hosts, we calibrate a hybrid network simula-
tor and use this simulator to predict the performance of
larger-scale hybrid networks.

1 Introduction
Designing scalable, cost-effective, packet-switched in-
terconnects that can support the traffic demands found
in modern data centers is already an extremely challeng-
ing problem that is only getting harder as per-server link
rates move from 10 to 40 to 100 Gb/s and beyond. In
this paper, we focus particularly on the challenge of up-
grading an existing network fabric that supports 10-Gb/s
end hosts to a network that can deliver 100 Gb/s to each
end host. We argue that this transition is inevitable be-
cause the PCIe Gen3 bus found in many current servers
can support 128 Gb/s, making emerging 100-Gb/s NICs
a drop-in upgrade for existing hardware.

Unlike previous generational upgrades, moving from
10- to 100-Gb/s link rates requires a fundamental tran-
sition in the way a data center is wired. At 100 Gb/s,
inexpensive copper cabling can no longer be used at dis-

tances greater than a few meters: virtually all cables
other than those internal to an individual rack must be
optical. If these cables interconnect electronic packet
switches, they further require optoelectronic transceivers
at both ends. Many popular packet-switched data-center
topologies like multi-rooted trees [25] require large num-
bers of connections between racks. Hence, the cost of
these designs begins to be dominated not by the con-
stituent packet switches, but instead by the transceivers
mandated by the optical interconnects necessary to sup-
port the increased link speed [10].

In contrast, if the switches internal to the network
fabric are themselves optical, the need for transceivers
can be significantly reduced. Researchers have previ-
ously proposed hybrid architectures consisting of a com-
bination of packet switches and optical circuit switches
managed by a common logical control plane [7, 10, 26].
Traditionally, however, their applicability has been lim-
ited by the delay incurred when reconfiguring the circuit
switches, as traffic has to be buffered while waiting for a
circuit assignment. Architectures based upon legacy op-
tical circuit switches designed for wire-area applications
are fundamentally dependent on stable, aggregated traf-
fic to amortize their long reconfiguration delays. There-
fore, their use has been restricted to either the core of the
network [10] or to highly constrained workloads [26].

Researchers have recently demonstrated optical circuit
switch prototypes with microsecond-scale reconfigura-
tion delays [6, 17, 19]. In prior work, we showed that
such a switch, when coupled with an appropriate control
plane [23], has the potential to support more dynamic
traffic patterns, potentially extending the applicability of
circuit switches to cover the entire network fabric re-
quired to interconnect racks of servers within a data cen-
ter. Circuit switching alone, however, incurs substantial
delays in order to achieve efficiency (e.g., 61–300 µs to
deliver 65–95% of the bandwidth of a comparable packet
switch in the case of our switch [23]), rendering it inad-
equate to meet the demands of latency sensitive traffic
within a data center. Moreover, the buffering required to
tolerate such delays with large port counts at 100 Gb/s
is substantial. By integrating a certain level of packet
switching, hybrid fabrics have the potential to address



these shortcomings. Existing hybrid designs, however,
are not capable of coping with the lack of traffic stability
and aggregation present at the rack level of today’s data
centers [2, 4, 15, 16].

In this paper, we propose a hybrid network architec-
ture in which optical circuit switching penetrates the
data center network to the top-of-rack (ToR) switch.
We leverage our recent work on the Mordia optical
circuit switch to build and experimentally prototype
the first hybrid network control plane that uses rapidly
reconfigurable optical circuit switches to potentially
provide packet-switch-like performance at substantially
lower cost than an entirely packet-switched network.
Our hybrid network design consists of a 100-Gb/s op-
tical circuit-switched network deployed alongside a pre-
existing 10-Gb/s electrical packet-switched network. In
this model, ToR switches support 100-Gb/s downlinks
to servers, and are “dual-homed” to a legacy 10-Gb/s
electrical packet switched network (EPS) and a new 100-
Gb/s optical circuit switched network (OCS).

REACToR’s design is based on two key insights. The
first is that it is impractical to buffer incoming traffic
bursts from each end host within the ToR’s switch mem-
ory. For a traditional in-switch time-division, multiple-
access (TMDA) queueing discipline, this architecture
would require a dedicated input buffer for each potential
circuit destination. Given the unpredictable nature of the
end-host network stack [16], these buffers would likely
need to be quite large.

Instead, REACToR buffers bursts of packets in low-
cost end-host DRAM memory until a circuit is provi-
sioned, at which point the control plane explicitly re-
quests the appropriate burst from each end host using a
synchronous signaling protocol that ensures that the in-
stantaneous offered load matches the current switch con-
figuration. Because each REACToR is dual-homed to
an EPS, the control plane can simultaneously schedule
the latency-sensitive traffic over the packet switch. The
packet switch can also service unexpected demand due
to errors in demand estimation or circuit scheduling.

The second insight is that if circuit switching is suf-
ficiently fast, then delays due using flow-level circuit-
switched TDMA at the end-host network stack will not
degrade the performance of higher-level packet-based
protocols; in a sense the circuit switch will “fly under the
radar” of these end-host transport protocols. As technol-
ogy trends enable faster OCS reconfiguration times, this
hybrid architecture blurs the distinction between packets
and circuits. By combining the strengths of each switch-
ing technology, a hybrid network can deliver higher per-
formance at lower cost than either technology alone,
even at the level of a ToR switch.

We evaluate our design for a 100/10-Gb/s OCS/EPS
hybrid network using a scaled-down 10/1-Gb/s hard-

Link rate Full fat tree Helios-like REACToR
10 Gb/s 2−4 1−3 N/A
100 Gb/s 4 3 1†

Table 1: Number of transceivers required per upward-facing
ToR port for different network architectures. (†Presuming a 10-
Gb/s packet network is already in place.)

ware prototype that supports eight end hosts. The proto-
type consists of two FPGA-based REACToRs with four
downward-facing 10-Gb/s ports each. Both REACToRs
connect to the Mordia [23] microsecond OCS and a com-
modity electrical packet switch. The circuit switch sup-
ports a line rate of 10 Gb/s while the packet switch is
rate limited to 1 Gb/s to enforce a 10:1 speed ratio. End
hosts connect to our prototype using commodity Intel 10-
Gb/s Ethernet NICs that we synchronize using standard
802.1Qbb PFC signaling.

Our experiments show that our REACToR prototype
can provide packet-switch-like performance by deliver-
ing efficient link utilization while reacting to changes in
traffic demand, and that its control plane is sufficiently
fast that changes in circuit assignment and schedule can
be made without disrupting higher-level transport pro-
tocols like TCP. Using simulation of more hosts, we
also illustrate the large benefits that a small underprovi-
sioned packet switch provides to a hybrid ToR relative to
a pure circuit ToR. We conclude that REACToR can ser-
vice published data-center demands with available tech-
nology, and can easily scale up to make effective use
of next-generation optical switches and 100-Gb/s hosts
by reusing an existing 10-Gb/s electrical packet-switched
network fabric.

2 Background
We start by motivating the benefits of a hybrid-ToR net-
work design, describing the work that REACToR builds
upon, and then discussing our design assumptions.

2.1 Motivation
Consider a data-center operator that wants to upgrade
an existing 10-Gb/s data center network—i.e., the part
of the network that connects the top-of-rack switches
together—to 100 Gb/s.

Table 1 shows the number of optical transceivers re-
quired for each upward-looking port of the ToR for three
different network architectures. The first architecture is
a fully provisioned three-level fat-tree network [1]. If all
of the links in the backbone network are optical, then this
network requires four transceivers per upward port. In a
Helios-like [10] architecture an optical circuit switch is
placed at the uppermost layer of the network, saving one
transceiver per port as compared to the number used in a
fat-tree network.
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At 10 Gb/s, if the links between aggregation switches
are short enough to be electrical, then transceivers may
only be required between aggregation and core switches,
potentially reducing the number of transceivers by up to
three per port. At 100 Gb/s, however, while electrical in-
terconnects may still be viable from an end host to a ToR
(i.e., distances less than 5 meters), all connections from
the ToR to the rest of the network are likely to be optical.
Hence, either architecture will require a full compliment
of optical transceivers. Moreover, in order to upgrade
the network the operator will have to replace the existing
10-Gb/s transceivers with new 100 Gb/s transceivers.

The REACToR architecture, in contrast, re-uses the
existing 10-Gb/s packet-based network and deploys a
parallel 100-Gb/s circuit-switched optical network un-
der a common control plane. As compared to the other
two architectures listed in Table 1, REACToR requires
only one 100-Gb/s transceiver per upward-facing port
of the ToR because the OCS does not use transceivers.
This means that for a fully provisioned three-level fat-
tree network, if the per-port cost of the OCS used in RE-
ACToR is less than three times the cost of a 100-Gb/s
optical transceiver, then a REACToR hybrid network
will cost less than an equivalent 100-Gb/s packet-based
network—even if the 100 Gb/s switches themselves were
free. Larger networks require even more transceivers
per end host: a five-level network requires eight trans-
ceivers to support each upward facing port, making the
economics of REACToR even more compelling. Over-
subscribed networks will use fewer transceivers in the
core network, but the scaling trends are still applicable.

While this example uses a 10-Gb/s EPS and a 100-
Gb/s OCS, the actual link rates for which a REACToR
architecture will be cost competitive with a fully provi-
sioned or over-subscribed packet-switched network de-
pends on market trends. Many OCS architectures are
based on MEMs devices and can easily support link rates
in excess of 100 Tb/s1 per port. For this kind of de-
vice, the cost per optically switched bit is decreasing
and is fundamentally inversely proportional to link rate.
While the costs per switched bit of optical transceivers
and packet switches are also decreasing, the rate of de-
crease is much slower. These trends imply the cost per
switched bit will eventually become comparable at some
link rate. What is less clear is the precise link rate when
this crossover point will occur and the economic viability
of a data-center network that supported such a link rate.

2.2 Related work
Hybrid data-center network architecture design is an ac-
tive research area. Helios [10] and c-Through [26] both

1The mirrors are typically reflective from approximately 1.3 µm to
1.6 µm which corresponds to a bandwidth of approximately 400 THz.

Rank-Ordered Connection Number
n21 n

Circuit
tra�c

Tr
a�

c 
pe

r C
on

ne
ct

io
n

Packet
tra�c

90%

10%

Figure 1: Rank-ordered traffic for each of the n2 elements of
a demand matrix, for which most of the traffic (e.g. 90%) is
carried in a few (O(n)) flows.

rely on slower 3D-MEMs based optical circuit switch-
ing, restricting their use to either highly aggregated traf-
fic (i.e., in the core of the network), or highly stable
traffic (e.g., long file transfers). OSA [7] combines
an OCS-based reconfigurable topology with multi-hop
overlay networking. The bandwidths of links in OSA
can be varied through the use of wavelength-selective
switching. In addition to optical switching, reconfig-
urable wireless links have also been proposed in data-
center contexts [12, 14, 28]. In contrast to these previous
approaches, which employ switching technologies with
relatively long reconfiguration times, REACToR relies
upon the Mordia [8, 23] OCS, which can be reconfig-
ured in 10s of microseconds, in order to service a much
larger portion of the offered demand through the circuit-
switched portion of the hybrid network fabric.

The question of how much buffering should be de-
ployed in a network has been considered under a wide
variety of settings. In the Internet, a common rule of
thumb has been that at least a delay-bandwidth product
is necessary to support TCP effectively. Appenzeller et
al. [3] challenged this assumption for core switches, and
argue that for links carrying many TCP flows, less buffer-
ing is necessary. In the data center, Alizadeh et al. pro-
pose modifications to TCP that, along with appropriate
switch support, can reduce the amount of buffering re-
quired down to a single packet per flow [2]. Other net-
work technologies have also been created that reduce in-
network buffering, including Myrinet [5] and ATM [20].
Numerous proposals for entirely bufferless “network-
on-chip” (NoC) networks have been proposed [21], in-
cluding hybrid NoC networks that also leverage packet
switches [13].

2.3 Design assumptions
Studies of data-center traffic show that the traffic demand
inside a data center is frequently concentrated, with a
large fraction of the traffic at each switch port of a ToR
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destined to a small number of output ports [15]. Such lo-
cality is not surprising, as application programmers and
workload managers frequently use knowledge about the
location of end hosts to coordinate workloads to mini-
mize inter-rack traffic. Based on these empirical obser-
vations, a fundamental premise of all hybrid networks—
including REACToR—is that a large fraction of the net-
work traffic is carried by a small number of relatively
long-lived flows. This observation can be expressed in
terms of the n2 rank-ordered elements of a demand ma-
trix for a network that connects n ToRs. Figure 1 shows
an example where 90% of the inter-ToR traffic is carried
by only n flows.

In such settings, the demand matrix is frequently both
sparse and stable [9, 12, 14]. This kind of traffic demand
is generally suitable for a large port-count optical circuit
switch, but these assumptions can be violated for specific
workflows over any given time interval. Therefore, RE-
ACToR switches the few high-traffic flows using an OCS
while forwarding the relatively small amount of traffic
between most ToRs using an under-provisioned standard
packet switch.

While rack-level coordination can lead to bursty traf-
fic at the upward looking ports of a ToR, we carry this
assumption one step further. Unlike previous hybrid de-
signs that focus on the core of the network, REACToR
critically depends upon individual hosts being able to fill
circuits assigned to them with data, which in turn de-
pends on hosts transmitting groups of packets to the same
destination ToR at fine time scales.

To verify this assumption, in previous work we mea-
sured individual flows, at microsecond granularity, em-
anating from a single host under a variety of work-
loads [16]. We find that host mechanisms such as TCP
segmentation offloading in the NIC and generalized seg-
mentation offloading in the operating system, cause traf-
fic to frequently leave the NIC in bursts of 10s to 100s of
microseconds. In Section 5.1, we expand upon this anal-
ysis to show that circuit switching these flows can further
enhance this behavior while not disturbing the transport
protocol. For regimes in which circuit switching does not
affect the transport performance of an end host, we say
that its flows are “flying under the radar”.

3 Design

A REACToR-enabled data center consists of N servers
grouped into R racks, each consisting of n nodes. We
assume that a preexisting 10-Gb/s packet-switched net-
work is already deployed within the data center. Overlaid
on top of this packet-switched network is an additional
100-Gb/s circuit-switched network. At each rack is a hy-
brid ToR called a REACToR, which is connected to the
packet-switched network with up ≤ n uplinks and is con-
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Figure 2: 100-Gb/s hosts connect to REACToRs, which are in
turn dual-homed to a 10-Gb/s packet-switched network and a
100-Gb/s circuit-switched optical network.

nected to the circuit-switched network with a separate set
of uc ≤ n uplinks. This means that the packet-switched
network supports R× up ports, and the circuit-switched
network supports R× uc ports. Each REACToR has n
downward-facing 100-Gb/s ports to its n local servers. In
this work, we consider the fully provisioned case where
up = uc = n; however, additional cost savings are possi-
ble when either or both of up and uc are less than n. Our
architecture is agnostic to the particular technology used
to build the circuit-switched fabric, but, given technology
trends, we presume it is optical.

Referring to Figure 2, an (n,up,uc)-port REACToR
consists of n downward-facing ports connected to servers
at 100 Gb/s, up = n uplinks connected to the packet-
switched network at 10 Gb/s, and uc = n uplinks con-
nected to the 100-Gb/s circuit-switched network. At
each of the n server-facing input ports, there is a clas-
sifier (labeled ‘C’ in the figure) which directs incom-
ing packets to one of three destinations: to packet up-
links, to circuit uplinks, or through an interconnect fabric
to downward-facing ports to which the other rack-local
servers are attached. There is no buffering on the path
to the packet uplinks, as buffering is provided within the
packet switches themselves. There is also no buffering
on the path to the circuit uplinks; instead, packets are
buffered in the end-host where they originate. When a
circuit is established from the REACToR to a given des-
tination, the REACToR explicitly pulls the appropriate
packets from the attached end-host and forwards them to
the destination.

REACToR relies upon a control protocol to interact
with each of its n local end-hosts to: (1) direct the end
host to start or stop draining traffic from its output queues
(which we refer to as unpausing or pausing the queue, re-
spectfully), (2) set per-queue rate limits, (3) provide cir-
cuit schedules to the end-host, and (4) retrieve demand
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estimates for use in computing future circuit schedules.
We first motivate the need for this functionality by de-
scribing the various other aspects of REACToR’s design
before detailing the host control protocol in Section 3.4.

3.1 End-host buffering
Each end-host buffers packets destined to the REAC-
ToR in its local memory, which is organized into traf-
fic classes, one per destination ToR, with an additional
class for packets specifically destined for the EPS (e.g.,
latency-sensitive requests). Each traffic class has its own
dedicated output queue (i.e., {Q0, Q1, ..., QN−1}), with
an additional queue for the EPS class, QP, as shown in
Figure 2. At any moment in time, the REACToR can ask
an end host to send packets from at most two classes:
one forwarded at line rate to an OCS uplink (or local
downlink port), and another forwarded to an EPS up-
link. This latter class of traffic must be rate limited at
the source NIC to conform to the link speed of the EPS
to prevent overdriving the EPS. In the reverse direction,
the EPS may emit packets into the REACToR at its full
rate to a particular downward-facing port. Because that
downward-facing port could potentially be shared by in-
coming line-rate circuit traffic heading to the same des-
tination, REACToR must further ensure that the circuit
traffic is sufficiently rate-limited so that there is enough
excess capacity to multiplex both flows at the destina-
tion. Hence, end hosts will be directed by REACToR to
similarly rate-limit traffic classes destined to the OCS at
the source NIC, but at much higher rates. Further details
on rate limiting are provided in Section 3.3.

Today, end-host NICs support modest amounts of
buffering, on the order of a few megabytes. However,
it is not organized in a way that can be directly used to
support circuits. NICs partition their buffers into a small
set of 8 to 64 transmit queues, which the OS uses to batch
and store packets waiting to be sent. The scheduling pol-
icy for these queues is typically built into the NIC (e.g.,
round robin), so the actual transmit time of individual
packets is outside the control of the OS.

To achieve high circuit utilization in REACToR, the
NIC needs the ability to send data for a particular circuit
destination to the ToR as soon as a circuit becomes estab-
lished, and to fill that circuit continuously until it is torn
down. At any one time, each circuit uplink within a RE-
ACToR is exclusive to a particular source port (attached
end host), so efficiency degrades any time that source has
no data to send. Thus, packets headed to the same circuit
destination (i.e., remote host) should be grouped together
within a host’s memory, so that when a circuit to that des-
tination becomes available, that group of packets can be
sent from the NIC to the REACToR at line rate.

Within each host, we define a traffic class per desti-
nation host, and task the OS with classifying outgoing

packets into the appropriate class based on, e.g., the des-
tination IP address. REACToR then uses the host control
protocol to pause and unpause end-host queues. In this
model, the role of the OS and of the NIC changes some-
what: rather than the OS “pushing” packets to the NIC
buffers based on queuing policies in the host, the NIC is
responsible for “pulling” packets from the host memory
into the NIC buffers according to the circuit schedule just
in time to transmit them to the connected circuit. (We
note that the NIC design advocated by Radhakrishnan et
al. [24] would be especially well suited for this model.)

Demand estimation. Over a short time scale (i.e.,
100s of µs, depending on the size of the NIC buffers), the
occupancy of these traffic classes defines the imminent
end-host demand because the packets in these queues
have already been committed to the network by the OS.
It is possible to query the OS, the application, or even a
cluster-wide job scheduler to form longer-term demand
estimates. For example, Wang et al. [26] use TCP send
buffer sizes as estimates of future demand. Our prototype
uses a demand oracle. In any case, the circuit scheduler
uses these demand estimates to determine a set of future
OCS circuit configurations.

3.2 Circuit scheduling
To make effective use of the capacity of the circuit
switch, REACToR must determine an appropriate sched-
ule of circuit switch configurations to service the esti-
mated demand over an accumulation period W . This is
the responsibility of a logically centralized, but poten-
tially physically distributed, circuit scheduling service,
which implements a hybrid circuit scheduling algorithm.
This service collects estimates of network-wide demand,
in the form of an N×N matrix D. The service computes
a schedule, Pk, of m circuit switch configurations, which
are permutation matrices2, and corresponding durations,
φk.

The number m of configurations that comprise the
schedule is constrained because each circuit configu-
ration requires a finite reconfiguration time δ , during
which time no data can be forwarded over the circuit
switch. When δ is large with respect to W , it is more ef-
ficient to use fewer configurations. When δ is small with
respect to W , more configurations can be used. Including
this reconfiguration delay, the duration of the schedule is
constrained by the length of the accumulation period so
that ∑

m
k=1 φk +δm≤W . The goal of the scheduling algo-

rithm is to maximize ∑
m
k=1 φk subject to these constraints.

Obviously, if the switch introduces a reconfigura-
tion delay, then it is impossible to service fully satu-
rated demand at line rate. Existing research in con-
strained scheduling has focused on switches that run

2A permutation matrix is a matrix of 0s and 1s in which each row
and column has and only has a single 1.
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faster than the link rate, with the ratio of the switch rate
to the link rate called the speedup factor. These algo-
rithms [11, 18, 27] produce a variable-length schedule
which is dependent on the actual reconfiguration delay.

Hybrid networks in general, and REACToR in partic-
ular, do not use a speedup factor. Instead, REACToR
uses the lower-speed packet switch as a way to make up
for the reconfiguration delay and any scheduling ineffi-
ciency. This “back channel” is a key distinction between
REACToR and traditional blocking circuit scheduling
because REACToR continues to service a subset of flows
over the EPS when circuits are not available, thereby in-
creasing support for latency sensitive workloads.

We leave the selection and evaluation of an circuit
switch algorithm as future work; for now we compute the
schedule offline using a variant of existing constrained
switching algorithms based on a predetermined demand
matrix D. Any schedule computed for use in REACToR,
however, is subject to a number of constraints.

Class constraints. In order to ensure the offered load
can be effectively serviced by the ToR, REACToR im-
poses a number of constraints on the set of queues that
can be unpaused at any particular time. First, the ded-
icated EPS queue (QP) is always unpaused but rate-
limited to at most 10 Gb/s, providing the host with the
ability to send latency-sensitive traffic directly to the EPS
at any point in time. Second, at most one additional
queue can be unpaused at any one time for transmission
at (near) link rate (i.e., 100 Gb/s). When such circuit-
bound (or rack-local) traffic arrives at an input classifier
in the REACToR, it is directly forwarded to the appropri-
ate circuit uplink (or downward-facing port) without any
intermediate buffering. The third constraint is that, if a
queue is unpaused for link-rate transmission in the cur-
rent scheduling period, then it should never be unpaused
for transmission to the EPS. This constraint serves two
purposes: it prevents the EPS from being burdened with
high-bandwidth traffic better served by circuits, and it
gives that traffic class additional time to accumulate de-
mand so that the circuits are highly utilized.

Fourth, any traffic class which is not assigned to a cir-
cuit (or downward port) during a scheduling period is in-
stead remapped to the EPS, meaning that any packets in
that class’s queue are routed to the EPS uplink. Finally,
all of the queues corresponding to EPS-bound traffic (i.e.,
both the dedicated EPS queue and and any classes not
scheduled for a circuit in this period) must be rate lim-
ited such that the sum of their limits is less than or equal
to the EPS link rate (e.g., 10 Gb/s).

3.3 End-host rate limiting
At any given time, each of the REACToR’s downward-
facing server ports can transmit data from two sources:
a circuit from a single source established through the

OCS (or rack-local connection) fabric, and traffic from
any number of sources forwarded through the EPS. At
each downward-facing port there is a multiplexer which
performs this mixing. When the sum of bandwidth
from the EPS (BEPS) and OCS (BOCS) exceeds the rate
of the REACToR port (BToR), then without intervention,
(BEPS+BOCS)−BToR traffic would be dropped. To prevent
such drops, and to ensure high overall utilization, we rely
on end-host rate limiting.

The first way that we use end-host rate limiting is to
ensure that in steady state, BEPS + BOCS ≤ BTOR. Since
the OCS is bufferless, the multiplexer gives priority to
packets arriving from the OCS because otherwise they
would have to be dropped. Assuming a REACToR with a
100-Gb/s OCS and 10-Gb/s EPS as an example, each end
host would rate limit its circuit-bound traffic in the range
of 90–100% of the link capacity to leave sufficient head
room for the EPS traffic, based on the estimate of EPS
demand in the current schedule. Each time that a set of
configurations for a scheduling period is computed, a rate
limit is also computed per configuration, reflecting the
estimated load from the EPS. Note that this estimate need
not be perfect, and in fact we expect the EPS to absorb
inaccuracies in scheduling, demand estimation, and rate
limiting. For each scheduling interval, the associated rate
limits are computed and sent to each end-host via the host
control protocol.

The circuit rate limit also serves a second pur-
pose, which is providing statistical multiplexing at the
downward-facing REACToR port. Underpinning the de-
sign of REACToR is the assumption that on short time
scales, traffic emanating to a single destination is bursty.
Each burst by definition consists of a number of packets
sent back-to-back. From the point of view of the RE-
ACToR port multiplexer, this means that, absent other
controls, during the first portion of a given circuit-switch
configuration interval φk, the entire port’s bandwidth
would be dedicated to servicing a single burst of traf-
fic from the OCS. Thus, any packets originating from the
EPS would be delayed until the end of φk. Figure 3(a)
shows a pictorial representation of this behavior. The
challenge that arises is that the line rate of the EPS is
presumed to be lower than the REACToR port speed and
the OCS. Hence, the open region at the end of φk can
only be filled with packets at the rate of the EPS (e.g., 10
Gb/s) instead of the OCS (100 Gb/s). Thus, for this ex-
ample, the region at the end of φk only gets 10% utilized
since the EPS can only drive 10% of the outgoing port
bandwidth.

Instead, REACToR seeks to ensure that the circuit traf-
fic is spread out across φk by limiting it to less than full
line rate (e.g., 90 Gb/s of a 100-Gb/s link). Rate limit-
ing over time allows the EPS-serviced traffic to be mul-
tiplexed on REACToR’s downward-facing ports at a uni-
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Figure 3: Rate limiting prevents bursts from the OCS from
starving the EPS, which would otherwise be unable to make
full use of each circuit-switch configuration interval φk. In both
cases, the circuit-switched traffic achieves 90 Gb/s during each
interval.

form rate across all configuration intervals φk, enabling
the entire interval to be utilized by both circuit traffic and
packet traffic. By setting circuit rate limits in the end
host, as described above, the traffic headed to the circuit
is paced to the appropriate rate. Figure 3(b) shows the
resulting treatment of circuit and packet data within that
same configuration interval φk.

3.4 REACToR host control protocol
An instance of the REACToR host control protocol runs
between each end-host and its REACToR switch. RE-
ACToR uses the protocol to retrieve demand estimates
collected by end-hosts, to set per-queue rate limits, as
described above, and to convey impending schedules to
the end host from the circuit scheduler. These functions
are relatively straight forward. In this section, we exam-
ine the fourth use of the host control protocol: managing
end-host traffic classes and buffering. The key to achiev-

ing efficient use of the hybrid network is being able to
drain the appropriate classes with fine-grained precision
at the right times. We now describe the host control pro-
tocol that achieves this precision.

Overview: To ensure reliable transmission, we cannot
reconfigure the OCS until all incoming circuit traffic has
ceased, since the OCS is unable to carry traffic during
the time δ when it is being reconfigured. While classi-
fiers on each REACToR input port can shunt all traffic
to the EPS nearly instantaneously, in general we would
like to ensure that almost all circuit-bound traffic has
been paused before reconfiguring the OCS. Otherwise,
a massive queue would build up at the EPS at the end
of each schedule. To avoid this buildup, we leverage the
802.1Qbb Priority Flow Control (PFC) protocol to pause
traffic at the end host. Each traffic class in the end host
corresponds to a PFC class.3 At the end of each sched-
ule, for each attached host, the REACToR first sends a
PFC frame to pause the traffic class destined for the cur-
rent schedule’s circuit (if any). Note that PFC frames are
selective, so traffic destined to the EPS will continue to
flow while the OCS is being reconfigured. Once inbound
circuit traffic has ceased, the OCS can be reconfigured.
After reconfiguration, the traffic class corresponding to
the next schedule’s circuit can be enabled by a PFC un-
pause frame.

Performance: The overall speed of the control plane
is bounded by the speed at which REACToR can pause
and unpause traffic classes buffered at the end hosts. Be-
cause the PFC frame must be both received and pro-
cessed at the NIC before traffic stops, there will be some
delay between when the controller wants to pause traffic
and when the traffic finally stops arriving at the incom-
ing ports at the REACToR. To quantify this delay, we
extended the classifiers on our prototype to timestamp all
incoming packets and mirror these timestamped packets
to a collection host. We then measured the time from
when the classifier sends a PFC frame to a host until it
stops receiving packets from that host.

We measured the minimum (maximum) delay on an
Intel 82599-based 10 Gb/s NIC as 1,014 (2,188) ns, with
the actual delay varying as a function of PFC offset,
meaning that if the PFC frame arrives more than 185.6 ns
after the start of the current frame, the NIC will generate
an additional frame before pausing, likely due to pipelin-
ing within the NIC implementation.

Once the OCS has established a circuit and is ready to
receive traffic, the REACToR needs to restart traffic for
the newly connected destination by sending another PFC
frame. The measured ‘on’ delay (i.e., from when the con-
figuration is started by the transmission of a PFC frame

3Although the current PFC specification is limited to eight frame
priority levels, it is possible to reuse classes across schedule periods by
recoloring.
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Figure 4: Our prototype REACToR network.

unpausing the traffic) ranges between 1.2 µs and 1.3 µs.
From the ‘off’ delay measurement, it is clear that we can
hide the first microsecond of delay by sending the PFC
frame before we actually want the traffic to stop, but it
may take an additional 1.3 µs for all ports to cease send-
ing. There is one additional source of delay: a port may
be busy sending an outgoing packet at the moment the
classifier wishes to send the PFC frame. This delay is
bounded by the 1500-byte MTU in our prototype, lead-
ing to a worst-case combined delay of approximately 2.5
µs, which is the lower bound of the speed of the control
plane achievable in REACToR with 10-Gb/s end hosts, a
1500-byte MTU size, and the 802.1Qbb implementation
on our NIC.

4 Implementation

To evaluate our design, we have implemented two proto-
type four-port 10-Gb/s REACToRs (shown in Figure 4)
using two FGPAs, a Fulcrum Monaco 10-Gb/s electrical
packet switch, and the Mordia microsecond OCS [23].
Mordia is 24-port reconfigurable OCS built from six
4-port “binary MEMs” wavelength-selective switches,
with a reconfiguration delay of δ = 12µs, which includes
the physical switching time of the MEMs devices and
the time to reinitialize the attached 10-Gb/s transceivers.
Thus, our REACToR prototype supports the same 10:1
bandwidth ratio described earlier, but at 10 Gb/s (OCS)
and 1 Gb/s (EPS) rather than 100/10 Gb/s.

Each REACToR is implemented with a HiTech Global
HTG-V6HXT-100GIG-565 FPGA development board,
which supports 24 ports of 10-Gb/s I/O. The circuit
scheduling service runs as a user-level process on a ded-
icated Linux-based control server, and transmits sched-
ules to the FPGA via a dedicated 10-Gb/s Ethernet con-
nection. In our implementation, the end hosts are servers
equipped with Intel 82599-based NICs. The end hosts
classify traffic according to the destination using the
Linux tc facility. The classifier on the FPGA selectively
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Figure 5: Observed end-to-end circuit switch reconfiguration
delay δ .

enables or disables packets to a given destination using
the IEEE 802.1Qbb priority-based flow control standard,
which supports eight flow classes. We use seven of these
classes to correspond to the n circuit destinations reach-
able from a REACToR, and the eighth is reserved for the
EPS-dedicated class.

At each switch reconfiguration, the controller on the
FPGA updates the OCS and enables the corresponding
end-host traffic classes using 802.1Qbb PFC frames. The
controller also configures the classifiers so that they for-
ward the appropriate line-rate flow to the circuit uplink,
and forward the remaining traffic to the EPS.

Circuit switch characterization: The average recon-
figuration delay for the Mordia switch is approximately
12 µs, with a maximum observed delay of 14.84 µs (as
shown in Figure 5). The transceivers we use vary in their
“lock” time, necessitating setting a more conservative re-
configuration delay. This variance is an engineering arti-
fact of our hardware and is not fundamental; the IEEE
802.3av (10G-EPON) specification, for instance, calls
for a 400-ns lock time. Except as noted, in the exper-
iments that follow, we configure REACToR to assume
a 30-µs reconfiguration time which, contained within at
least a 160-µs configuration period, delivers at least 81%
link efficiency.

REACToR host control protocol: To tightly time
synchronize the attached hosts, REACToR sends the
schedule to each attached host using two UDP pack-
ets. The first packet contains the impending schedule
for the upcoming 3-millisecond period, whereas the sec-
ond packet indicates the start of the three-millisecond
time period, serving as a precise periodic heartbeat. End
hosts receive these packets in a kernel module via the
netpoll kernel APIs, which reduces the delay in act-
ing on them to less than 15 µs.
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5 Evaluation

In this section, we evaluate the performance of our
REACToR prototype implementation. We first show
that, with buffering and scheduling packets at end-host
NICs, circuit-switching does not negatively impact TCP
throughput. Second, we show that the REACToR can
dynamically update and switch schedules of many flows
without impacting throughput. Third, we show that RE-
ACToR can serve a time-varying workload that consists
of multiple high- and low-bandwidth flows, promoting
flows as appropriate from the packet-switched fabric to
the circuit-switched fabric. Finally, we use simulation to
illustrate the large benefits that a small underprovisioned
packet switch provides to a hybrid ToR.

To generate arbitrary traffic patterns, we implemented
a Linux kernel module based on pktget [22] that can
send MTU-sized UDP packets at arbitrary rates up to line
rate. When the module is sending, it runs on a dedicated
core and each packet it sends has a sequence number. At
the same time, the module also serves as a traffic sink that
receives UDP traffic via the netpoll kernel interface,
and records the sequence number and source address of
packets. For packet timing measurements, we configured
the FPGA to generate a record for each packet that cap-
tures the source, destination, and a timestamp with 6.4-
nanosecond precision. The prototype sends these records
out-of-band to a collection host using one of the 10 Gb/s
ports of the FPGA, which we then process offline.

5.1 TCP under TDMA scheduling
In Section 2.3, we described how application flows ex-
hibit intrinsic short-term correlated bursts as a conse-
quence of the NIC trying to efficiently use the link. We
therefore consider how flows behave in a hybrid fabric
where a circuit scheduler pauses flows at the host while
they wait for an assigned circuit and unpauses them when
the circuit is established. While its flow is paused, an ap-
plication may generate additional packets, increasing the
size of its burst when its flow is eventually unpaused and
thereby more efficiently use its circuit. However, the in-
creased latency and latency variation induced by pausing
and unpausing flows may detrimentally impact the trans-
port protocol (e.g., TCP) or the application itself.

To study the impact of circuit scheduling on TCP
throughput, we generate stride workloads where a sin-
gle host sends to another host, and at the same time sinks
a TCP flow from a third host. First we consider the case
where we pause and unpause a bi-directional circuit, i.e.,
pause both data and TCP ACKs at the same time. Next
we consider the case where we pause the data in the flow,
but allow ACKs to return unimpeded (e.g., via the EPS).
Finally, we consider the case where we pause the ACKs,
but enable data packets to transmit unimpeded.
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Figure 6: Effect of pausing/unpausing data/ACK packets on
TCP throughput.

Figure 6 shows the resulting normalized throughput
when varying the reconfiguration delay δ for a stride
workload with eight hosts. In the first case, the normal-
ized throughput of uni-directional and bi-directional cir-
cuits is close to ideal, showing that pausing data pack-
ets on the end hosts does not affect throughput for pause
lengths considered by REACToR. When pausing only
the ACKs, we find that there are two regimes to con-
sider. During slow start (‘Small Flow’), pausing ACKs
decreases the overall throughput of the flow—up to 30%
for 3-ms delays. For shorter delays (e.g., ≤1 ms) there is
no detectable effect for pausing ACKs. Once the flow
leaves slow start (‘Large Flow’), there is no effect on
throughput regardless of the reconfiguration delay.

These experiments consider the effect of circuit
scheduling on TCP traffic in the absence of packet loss.
In practice, packets may be lost for a variety of reasons.
We repeated the experiments above where each end host
drops packets uniformly at random with a configurable
drop probability. While TCP throughput suffers as ex-
pected with increasing drop rates, the difference in per-
formance with and without circuit scheduling (e.g., with
and without issuing PFC pause frames) is insignificant
for steady state loss rates up to 1%.

5.2 Switching “under the radar”
Next we evaluate the speed and flexibility with which
REACToR can be reconfigured. We first run an all-to-
all workload on eight hosts, where every host streams a
TCP flow to each of the other seven hosts using all avail-
able bandwidth. To serve this workload, we load REAC-
ToR with a schedule of seven TDMA periods that fairly
shares the links among all the flows. Each schedule pe-
riod is 1.5 ms, within which each host sends and receives
from each other host for 214.3 µs (including a 30-µs cir-
cuit reconfiguration delay) in each circuit configuration.
We schedule all data packets via the circuit switch, and
all TCP ACKs via the packet switch. We could use the
same schedule for every period, but to further exercise
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Figure 7: All-to-all workload with circuit configurations changing every scheduling period.

our prototype we change the schedule so that hosts re-
ceive circuits in different permutations in each period.

Figure 7 shows three seconds of an all-to-all workload
where flows start at the same time on the hosts. The bot-
tom part shows the achieved throughput as reported by
one of the hosts: the flows from the other seven hosts
evenly split the available bandwidth. Total TCP goodput
received is 8.1 Gb/s, the maximum given the 86% duty
cycle resulting from the 30-µs reconfiguration delay in a
214.3-µs circuit.

At the application level, the achieved TCP goodput
maximizes network capacity and is stable over time.
However, if we zoom in and look at the packet traces,
as shown in the top part of the figure, we can see the
fine-grained behavior of scheduling the flows on circuits.
A control packet triggers a new schedule each period,
which the controller sends to the REACToR during the
previous period (at the time marked ‘Reconfig’) and the
switch loads just before the new period starts (‘Apply’).
The schedule partitions each period into seven circuit
configurations, one for each of the seven hosts sending
to the host we are observing.

At time offset zero, for instance, host 0 has the first
configuration in the schedule. Its data packets arrive over
the circuit it receives, and no other host can send data
packets through the circuit switch to host 7. The sec-
ond configuration schedules host 3, and so on. ACKs
received at host 7 use the packet switch, and hence can
overlap circuits scheduled for other hosts. (The flow as-
signments are asymmetric; when host 0 is sending to
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Figure 8: Changing the number and duration of configurations
in scheduling periods.

host 7 at time zero, host 7 is sending to host 6 and re-
ceiving ACKs from it.)

This all-to-all workload does not vary demand over
time. Given the frequency with which we can recon-
figure the circuit switch, we can also serve time-varying
workloads by serving different workload demands under
different scheduling times with different numbers of con-
figurations and circuit assignments.

We use another experiment to demonstrate this flexi-
bility. We divide the eight hosts into two groups: GA con-
sists of hosts 0–3, and GB hosts 4–7. We then generate
traffic among the hosts using two workloads. The first is
a group-internal all-to-all, where each host streams TCP
packets to the other three hosts in its group at the max-
imum possible rate. To serve this workload, REACToR
uses a schedule that has three configurations in a schedul-
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ing period. The period lasts 1,500 µs, and each config-
uration lasts 500 µs (including a 30-µs reconfiguration
delay). The second is a cross-talking all-to-all workload
where each host in GA streams to all the other four hosts
in GB, and vice versa. For this workload, REACToR uses
schedules with four configurations. These scheduling pe-
riods also last 1,500 µs, but each configuration lasts 375
µs (again including a 30-µs reconfiguration delay).

In the experiment, we change from the group-internal
to the cross-talk workloads midway through, loading
the REACToR with correspondingly different schedules.
Figure 8 shows the incoming packets to host 7 around
the workload transition time. We controlled the exper-
iment so that the workload changes at an inconvenient,
but more realistic, time for REACToR: during a schedul-
ing period, at time 750 µs on the graph. REACToR’s
schedules commit the switch based on predicted demand,
and workloads are apt to change their demand indepen-
dent of when REACToR can conveniently accommodate
them. At this workload transition, REACToR is halfway
through its scheduling period and packets already queued
at the first three hosts continue to arrive via circuits.
Overlapping these flows, the other four hosts start send-
ing packets to host 7. These hosts do not have circuits,
so the packets arrive via the EPS at a much lower rate.

At the end of its committed scheduling period (time
1,500 µs), REACToR can then react to the workload
transition and schedule circuit configurations that match
the workload. At this time, host 7 changes from receiving
packets in 500-µs configurations, scheduled round-robin
from hosts 4–6, to receiving packets in 375-µs configu-
rations from hosts 0–3.

In summary, these experiments demonstrate the speed
and flexibility with which REACToR can reconfigure its
circuit schedules given a known demand. Applications
achieve their expected goodput at a high level, while in-
dividual flows are paused and released at fine time scales
when their circuits are scheduled. Further, REACToR
can adjust the circuit schedule to adapt to changes in ap-
plication behavior and demand.

5.3 Time-varying workloads
Next we show that REACToR can dynamically serve
rapidly changing traffic demands and efficiently move
flows from the EPS to the OCS.

In this experiment, we vary the number of high band-
width and low bandwidth flows among hosts at small
timescales. The workload pattern is again all-to-all
among eight hosts, which we observe from the perspec-
tive of one of the hosts and its seven incoming flows.
Initially one of the flows is a high-bandwidth flow send-
ing at full demand and served on the circuit switch, and
the other flows are lower bandwidth flows (each paced at
96 Mb/s) served on the packet switch. At time t1, one of
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Figure 9: Goodput achieved for a time-varying workload of
three flows to a single end host.

the low bandwidth flows changes to a second high band-
width flow — representing a dynamic shift in application
behavior — and needs to be served on the circuit switch.
At each subsequent time step, another lower bandwidth
flow becomes high bandwidth and transitions from the
EPS to the OCS.

Figure 9 shows the throughput achieved by each of the
flows. Initially, the high bandwidth flow has exclusive
use of the circuit switch. At each time step ti, another
flow transitions from low to high bandwidth and REAC-
ToR promotes it from the EPS to the OCS. Each time, all
high bandwidth flows then adjust to fairly share the link
bandwidth to the receiving host. In each case, REACToR
seamlessly handles the shift in traffic demands.

Note that a flow might send at a lower rate during the
first 1.5 ms scheduling period. This happens when the
schedule changes and a flow is served earlier in this pe-
riod than the previous one. As a result, the queue buffer
does not yet have enough enqueued packets to fully uti-
lize the link. The queue buffer will be built up start-
ing from the second scheduling period, and the flow will
fully utilize the link again.
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Figure 10: Performance of a circuit switch ToR and REAC-
ToR in different workload regimes.

5.4 Large benefits from a small EPS
As a final step, we illustrate how an underprovisioned
packet switch in REACToR substantially relaxes the con-
straints of a pure circuit switch. In particular, we show
how the ability to offload small flows to the packet switch
enables REACToR (1) to maintain high circuit utilization
and high workload goodput under our workload assump-
tions, and (2) to support full simultaneous endpoint con-
nectivity for small flows.

We use simulation for these experiments to evaluate
behavior beyond the constraints of our testbed. The sim-
ulator models a single REACToR switch, including the
behavior of end hosts with NIC buffers, a circuit switch
with switching overhead, a packet switch with buffers,
and the circuit scheduler from Section 3.2. We validated
the simulator output using our prototype: for workloads
involving eight or fewer hosts, flow goodput calculated
by the simulator always had errors less than 1% of flow
goodput measured on the prototype implementation.

Maximizing circuit utilization Using the simulator,
we explore the performance regimes of a single hy-
brid ToR-like REACToR at rack scale. For compari-
son, we simulate 64 end hosts connected first to a pure
circuit switch and then to a REACToR switch via 100-
Gb/s links. We compare with a circuit switch, not be-
cause we expect it to perform ideally well, but because
it helps illustrate how a REACToR switch performs. In
this experiment, each host j sends traffic to its neigh-
boring twenty-one hosts j + 1 through j + 21, one flow
per host. The total offered demand across all twenty-one
flows is 100 Gb/s. The flow from j to j+ 1 is a “large”
flow whose demand D we vary up to the full 100 Gb/s.
The other twenty “small” flows have equal demands di-
viding the remaining (100-D)-Gb/s bandwidth equally.
For scheduling circuits, each configuration has a dura-
tion of at least 40 µs (including reconfiguration delay),
the scheduling period is 3000 µs (at most 75 configura-
tions), and the reconfiguration delay is 20 µs (hence each
configuration has at least 50% utilization). For REAC-

ToR, we simulate a 100-Gb/s circuit switch and a packet
switch internally, where the packet switch is 10 Gb/s or
20 Gb/s.

Figure 10 shows the results for this experiment. The x-
axis shows the demand of the large flow from each host
as a percentage of link rate (100 Gb/s), and the y-axis
shows the goodput of the ToR given the offered work-
load. We show three curves, one for a pure circuit switch
and two for REACToR, with the curves overlapping at
points. We note, of course, that a fully-provisioned
packet switch as the ToR could switch this workload at
full rate.

The lowest curve shows the results of using a pure cir-
cuit switch for the ToR, with the right-most point of the
curve as the ideal case for a circuit switch. Hosts send
all of their traffic in the large flow at 100 Gb/s (small
flows have zero demand). In this case all of the flows can
take full advantage of a circuit when the switch schedules
one for them: each flow has data to transmit during their
entire allocation in the circuit schedule. Once the small
flows start to have a non-zero demand, though, there is a
cliff in circuit switch performance. The demands to the
other hosts, although small, are all non-zero; as a result,
the switch schedules each small flow a circuit to carry
its traffic. But the small flows do not have the traffic
demand to fully utilize their circuit allocations, leaving
them under-utilized. As the larger flow decreases in de-
mand moving to the left, and the smaller flows corre-
spondingly increase, the circuit switch performance im-
proves as the small flows are better able to utilize their
allocations. Once the small flows are able to fully use
their circuits (when the large flow demand is at 87%),
the pure circuit switch performance levels off. At this
point, the lower goodput of the circuit switch is entirely
due to reconfiguration delay overhead.

In comparison, the middle curve shows the perfor-
mance of a hybrid ToR-like REACToR with a 100:10
capacity ratio. Between 90–100 Gb/s for the large flow
(< 10 Gb/s combined for the small flows), REACToR
performs just like a packet switch because the com-
bined demands of the small flows go through REAC-
ToR’s packet switch while the large flows go through
REACToR’s circuit switch. This regime represents RE-
ACToR’s ability to efficiently switch traffic that does not
have good burst behavior. As long as the combination
of those flows fits within the EPS “budget”, REACToR
has the performance of a 100-Gb/s packet switch using a
combination of a 100-Gb/s circuit switch and a 10-Gb/s
packet switch.

Below 90 Gb/s, REACToR performance gradually and
gracefully degrades as the combined demands of the
small flows exceed the 10-Gb/s per-host rate of REAC-
ToR’s packet switch; notably, it avoids any discontinu-
ities in performance. REACToR then needs to schedule
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Figure 11: Performance of a circuit switch ToR and REAC-
ToR as a function of the number of small flows.

an increasingly larger portion of small flow demand on
the circuit switch. REACToR goodput will decrease as
a combination of imperfect utilization of circuits when
assigned to small-flow demand, and additional reconfig-
uration delays for those circuit assignments.

Note that for this curve the circuit and packet switches
had a 100:10 capacity ratio. There is nothing funda-
mental about this choice. A network using REACToR
switches could tailor this ratio to balance cost and work-
loads: networks with more shorter-burst flows can de-
ploy more EPS resources at higher cost, or vice versa. In
terms of Figure 10, more EPS resources shift the point
of 100% goodput for REACToR to the left, as shown by
the top-most curve corresponding to an internal 20-Gb/s
packet switch in REACToR.

Endpoint connectivity. In addition to maintain-
ing high circuit utilization, the underprivisioned packet
switch also enables REACToR to support many simulta-
neous flows between endpoints in the tail of the work-
load distribution. To illustrate this point, we perform one
last experiment focusing on the number of simultaneous
small flows between distinct endpoints in the network.
In a network of 64 hosts, we represent the aspect of the
workload well matched to circuits using one single large
flow consuming 90% of the capacity: an ideal case for
a pure circuit switched network. We then evenly split
the remaining 10% among n small flows, where n varies
between 1 and 64.

Figure 11 shows the goodput of the ToR (percentage
of offered demand serviced by the ToR) as a function
of the number of small flows for this experiment. At
n = 1, both the hybrid and pure circuit ToRs perform
the same on the trivial single large flow. The bottom
curve shows the pure circuit ToR goodput in the pres-
ence of small flows. Goodput steadily decreases because
the circuit switch has to assign circuits to every flow. As
the number of small flows increases, the demand in each
flow decreases; circuit durations decrease, but the rate of
reconfigurations correspondingly increases. Hence the
pure circuit ToR becomes increasingly less efficient.

The top curve shows the hybrid ToR performance. By
construction, its internal packet switch can satisfy the
bandwidth demands of the small flows and therefore effi-
ciently handle the full endpoint connectivity of the work-
load. If the total demand of the small flows comprising
the tail of the workload exceeds the capacity of the un-
derprovisioned packet switch, then the performance of
the hybrid ToR will trend towards the left-hand regime
in Figure 10 (e.g., where the large flow demand drops
below 90% with a 10G EPS).

6 Conclusion
Hybrid ToRs, such as REACToR, have the potential
to enable scalable, high-speed networks by pairing the
numerous advantages of optical circuit switching with
comparatively underprovisioned packet switching. The
key insight driving our work is that by moving the vast
majority—but not all—of the buffering out of the switch
and into end hosts, more scalable interconnect fabrics
can be supported.

Practically speaking, this only works if 1) end hosts
emit bursts of traffic to a given destination that are both
predictable and of sufficient duration to fill OCS circuits,
and 2) the hybrid scheduler operates at timescales that
are invisible to the transport and applications running on
the end hosts. In the first case, in-NIC buffering that his-
torically has been used to drive line rate transmissions
can be repurposed to stage impending data bursts, there-
fore fully using OCS circuits. In the second case, for a
two-REACToR prototype, we have shown that we can
schedule end hosts to make use of an OCS without neg-
atively impacting TCP performance. A design challenge
posed by interconnecting a large number of REACToRs
is co-scheduling and synchronizing directly connected
REACToRs to avoid the need for buffering on uplink
ports. We leave this global scheduling problem for fu-
ture work.
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