
Scheduling Techniques
for Hybrid Circuit/Packet Networks

He Liu§∗, Matthew K. Mukerjee†, Conglong Li†, Nicolas Feltman†,
George Papen, Stefan Savage, Srinivasan Seshan†, Geoffrey M. Voelker,

David G. Andersen†, Michael Kaminsky‡, George Porter, and Alex C. Snoeren

University of California, San Diego †Carnegie Mellon University ‡Intel Labs §Google, Inc.

ABSTRACT
A range of new datacenter switch designs combine wireless
or optical circuit technologies with electrical packet switch-
ing to deliver higher performance at lower cost than tradi-
tional packet-switched networks. These “hybrid” networks
schedule large traffic demands via a high-rate circuits and re-
maining traffic with a lower-rate, traditional packet-switches.
Achieving high utilization requires an efficient scheduling
algorithm that can compute proper circuit configurations and
balance traffic across the switches. Recent proposals, how-
ever, provide no such algorithm and rely on an omniscient
oracle to compute optimal switch configurations.

Finding the right balance of circuit and packet switch use
is difficult: circuits must be reconfigured to serve different
demands, incurring non-trivial switching delay, while the
packet switch is bandwidth constrained. Adapting existing
crossbar scheduling algorithms proves challenging with these
constraints. In this paper, we formalize the hybrid switching
problem, explore the design space of scheduling algorithms,
and provide insight on using such algorithms in practice. We
propose a heuristic-based algorithm, Solstice that provides a
2.9× increase in circuit utilization over traditional scheduling
algorithms, while being within 14% of optimal, at scale.

CCS Concepts
•Networks → Bridges and switches; Packet scheduling;
Data center networks;

Keywords
circuit networks; packet networks; hybrid networks

∗Work done while at UCSD

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CoNEXT ’15, December 01–04, 2015, Heidelberg, Germany

c© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3412-9/15/12.

DOI: http://dx.doi.org/10.1145/2716281.2836126

1. INTRODUCTION
Today’s datacenters aggregate tremendous amounts of

compute and storage capacity, driving demand for network
switches with ever-increasing port counts and line speeds.
However, supporting these demands with existing packet
switching technology is becoming increasingly expensive—
in cost, heat, power, and cabling. Packet switches are flexible,
capable of making forwarding decisions at the granularity
of individual packets. In common modern scenarios, how-
ever, this flexibility is unnecessary: many (often consecutive)
packets are sent to the same output port. Two key factors con-
tribute to this traffic pattern. First, traffic inside a datacenter
often has high spatial locality, where a large fraction of the
traffic that enters each switch port is destined for only a small
number of output ports [16,23]. Second, traffic is often bursty,
with significant temporal locality between packets sharing
the same destination [17, 23]. The consequence of these two
factors is that the traffic demand matrix at a datacenter switch
is often both skewed and sparse [5, 13, 15].

Researchers have seized upon these observations to pro-
pose hybrid datacenter network architectures that offer higher
throughput at lower cost by combining high-speed opti-
cal [4,6,28] or wireless [13,15,31] circuit switching technolo-
gies with traditional electronic packet switches. Typically,
the circuit switch has a significantly higher data rate than
the packet switch, but incurs a non-trivial reconfiguration
penalty. While the potential cost savings that hybrid tech-
niques could realize is large, the design space of scheduling
algorithms that enable high utilization in hybrid networks is
not yet well understood. Earlier work that considers circuit
switches with substantial reconfiguration delay offers no guid-
ance about how to negotiate the trade-off between remaining
in the current (potentially sub-optimal) circuit configuration
vs. incurring a costly reconfiguration delay to switch to a
potentially better circuit configuration [6, 27, 28]. The recon-
figuration cost of these systems was so high that they were
forced to keep a configuration pinned up for a relatively long
period anyway.

In recent years, however, the switching time of optical
circuit switches has improved substantially [22]. As a re-
sult, an efficient scheduling algorithm for a modern hybrid
design must determine: 1) a set of circuit configurations
(which ports are connected to which other ports and how

Hybrid Switch

Sender

Sender

Sender

N Input Ports

Receiver

Receiver

Receiver

N Output Ports

Circuit
Switch

Packet
Switch

 . . . 1 .
 1
 1
 . 1 . . .
 . . 1 . .

 . . 1 . .
 . . . 1 .
 1
 1
 . 1 . . .

 . 3 . 1 4
 . . 6 2 .
 2 . . 2 4
 5 1 2 . .
 1 4 . 3 .

69 10Schedule
S =

Duration Circuit Configuration Duration Circuit Configuration Leftover Demand

Network Model

Must Be Scheduled

Circuit Switch Packet Switch

Demand D =
(measured by

an accumulator)

 . 13 10 70 4
 . . 14 12 69
65 . . 12 14
15 33 2 . 11
12 7 3 1 .

S
e
n
d
e
r
s

R e c e i v e r s

Scheduling
Algorithm

(our contribution)

Scheduling Overview

Figure 1: Our model of a hybrid switch architecture and the scheduling process. The circuit switch has high bandwidth, but slow reconfiguration
time. The packet switch has low bandwidth (e.g., an order of magnitude lower), but can make forwarding decisions per-packet.

long that configuration should remain in effect) designed to
maximize the traffic serviced over the high-bandwidth but
slow-to-reconfigure circuit-switched network, and 2) what
traffic should be sent to the low-bandwidth but flexible packet
switch.

Computing an optimal set of circuit configurations to max-
imize circuit-switched utilization has no known polynomial-
time algorithms, scaling as O(n!) in the number of switch
ports (§3). The challenge arises due to the non-trivial switch-
ing time between configurations, which necessitates not only
sending as much traffic as possible, but doing so in the fewest
number of configurations.

The end goal of this paper is an effective and fast heuristic
algorithm that delivers high switch utilization. To this end,
we first provide a detailed characterization of the problem
plus an optimal (but impractical) solution that sheds light on
how to design an effective heuristic. We then present our
heuristic, Solstice, which provides 2.9× higher utilization
compared to previous algorithms by taking advantage of the
known sparsity and skew of datacenter workloads—some
of the same features that make the traditional scheduling
problem hard.

The contributions of this work are as follows:

1. Characterizing the hybrid switch scheduling problem.

2. Exploring the design space of hybrid scheduling:

1. Lower bound: an instantly computable but loose
bound on the minimum amount of time it takes to
serve all demand (but provides no actual schedules).

2. Optimal scheduling: optimally schedule all de-
mand with minimal time; impossible to run in real
time at scale.

3. Heuristic algorithm (“Solstice”): runs in real time
at scale, but slightly underperforms optimal (by at
most 14% at target scale).

4. Heuristic + optimization (“Solstice++”): runs at
scale (though not in real time), but tightens the gap
between Solstice and optimal (at most 12% from
optimal at target scale).

3. Insight into the challenges and benefits of using hybrid
switches, with a focus on high circuit utilization.

2. BACKGROUND
We consider a single switch in a hybrid network fabric that

consists of n ports. In the context of datacenters, these ports
would typically connect to individual servers or Top-of-Rack
(ToR) switches. We leave multiple-switch networks to future
work. Our model assumes each port is logically input queued.
In some realizations, the queues are located at the senders
themselves [19], although alternatively, the queues could be
located at the ToR switches or the hybrid switch itself.

Our abstraction of a hybrid switch (shown on the left-hand
side of Figure 1) consists of two separate switches: a circuit
switch, typically optical or RF, capable of forwarding at very
high bandwidth, and a low-bandwidth (e.g., an order of mag-
nitude lower) packet switch. Both switches source packets
from the queues at each of the n input ports, structured as
virtual output queues (VOQs). Although the circuit switch
has a significantly faster data rate than the packet switch, it
incurs a non-trivial reconfiguration penalty.

Prior work has focused on building such a switch [6, 19,
22, 28], with little focus on how to schedule traffic, instead
relying on an omniscient oracle to compute optimal switch
configurations. ReacToR, for example, leaves the selection
and evaluation of a hybrid scheduler as future work [19].

2.1 Switch model
In our model, each input port of the hybrid switch is simul-

taneously connected to both the packet switch and the circuit
switch. At any point in time, however, at most one VOQ at
each input port may be serviced by the circuit switch, whereas

Symbol Definition
n number of switch ports
δ circuit reconfiguration time

rc, rp circuit/packet link rates
D input demand matrix (n× n)
E demand sent to packet switch (n× n)
Pi circuit switch configuration (n× n)
ti time duration of Pi
m number of configurations

Table 1: Notation used throughout the paper.

multiple VOQs may be drained simultaneously by the packet
switch. The circuit switch functions as a crossbar: it can
connect any input port to any output port, but no output port
may be connected to multiple input ports, and no input port
may be connected to multiple output ports (aside from their
connection to the packet switch) in a single configuration.

The circuit switch can be reconfigured with the cost of
a fixed time delay δ (e.g., 20 µs [19]). Some technologies
allow circuits that do not change during a reconfiguration to
forward data during the reconfiguration period. We assume
a pessimistic view that all communication stops during a
reconfiguration, allowing our scheduler to function with a
wider set of technologies. The packet switch, on the other
hand, can service traffic at all times.

To ensure high circuit utilization, each circuit configuration
must remain active for a long period with respect to δ. For
example, to ensure 90% link utilization over the circuit switch,
the average duration of a configuration needs to be at least 9δ
(e.g., 180 µs) to amortize the reconfiguration delay.

One important distinction between our model and tradi-
tional switches is that there is no queueing at the output ports
of the circuit switch. This restriction rules out any crossbar
scheduler that requires a speed-up factor. Hybrid switches
instead use a lower-data-rate commodity packet switch (with-
out constraints on queueing/speed-up), to make up for the
reconfiguration delay and any scheduling inefficiency. We
will see that this addition provides an improvement compared
to existing approaches.

2.2 Formalizing the problem
Our goal is to calculate a schedule for the circuit switch,

and to determine what data to send to the packet switch,
such that we service all demand (i.e., no starvation) while
maximizing utilization. How the scheduler learns about the
traffic demand is orthogonal to this work, but some possi-
bilities include estimation/prediction algorithms or simply
accumulating the demand before transmission.

2.2.1 Notation
In order to formalize our goal, we define some of the core

concepts. We summarize our notation in Table 1 and below:
The hybrid switch: Our hybrid switch has n full-duplex

ports. The circuit switch has a reconfiguration time of δ
seconds and a link rate of rc bits/second. The packet switch
has a link rate of rp � rc (e.g., 1:10) bits/second.

Formula Definition

Controllable Variables:
m number of configurations
Pi circuit switch configuration
ti time duration of Pi

E demand sent to packet switch

Goal:
min T = (

∑m
i=1 ti) +mδ minimize total time

Constraints:
1) E +

∑m
i=1 rctiPi ≥ D demand satisfaction

2) ∀i :
∑m

j=1Ei,j ≤ rpT cap outbound packet links

3) ∀j :
∑m

i=1Ei,j ≤ rpT cap inbound packet links

Table 2: Summary of the problem.

Demand: We express demand as a matrix D of size n×n,
where the rows are sources and the columns are destinations.
Da,b ∈ R+

0 is the amount of data port a wants to send to port
b, in bits. In the resulting schedule, some of this demand,
which we denote by matrix E, will be sent to the packet
switch; E is an n×n matrix, where Ea,b is the portion of the
demand Da,b sent from a to b via the packet switch, in bits.

Scheduling: A circuit switch schedule is a set of configu-
rations {P1, P2, . . . , Pm} and an associated set of durations
{t1, t2, . . . , tm}. Each configuration Pi is an n × n binary
matrix encoding which nodes are connected to each other
in the circuit switch. Pia,b

= 1 iff port a can send to port
b during this configuration. Because the circuit switch con-
nects each sender to exactly one receiver and vice-versa, all
Pi are permutation matrices (i.e., have exactly one 1 in each
row/column). Each configuration Pi is associated with a
corresponding duration ti that indicates how long the circuit
switch should remain in that configuration.

2.2.2 Overall goal
Our goal is to minimize the amount of transmission time

it takes to schedule all demand, thus maximizing utilization.
We wish to fully schedule all demand before considering
new demand to ensure fairness and to avoid starvation. To
achieve this, our algorithm selects the circuit switch schedule
(m,Pi, ti) as well as which data to forward via the packet
switch (E). This process is depicted in the right-hand side of
Figure 1. Further, we need to formally define our goal, total
time, and two constraints, demand satisfaction and packet
switch capacity, which we do in Table 2 and below:

We define total time as the amount of time scheduled on
the circuit switch plus the amount of time spent switching
configurations:

T =

(
m∑
i=1

ti

)
+mδ.

Time used by the packet switch is constrained to be concur-
rent with the time spent on the circuit switch, limiting the

packet switch capacity. Thus, for each outbound link i, the
amount of data admissible is:

m∑
j=1

Ei,j ≤ rpT.

Inbound links are constrained similarly.
Demand is satisfied when, for each source/destination pair,

the amount of data served on the packet switch plus the
amount served on the circuit switch is greater than or equal
to the demand:

E +

m∑
i=1

rctiPi ≥ D.

2.3 Demand matrices
A key assumption in our work is that demand matrices are

sparse and skewed. We now discuss both assumptions.
Sparsity: For a demand matrix D, counting the number

of non-zero elements in each row and column results in 2n
values. The largest of these values we refer to as Dcount.
D is “sparse” when Dcount is small. Sparse matrices can
be scheduled more efficiently on a circuit switch since they
inherently require fewer configurations. In practice, for a
fixed period of demand accumulation, Dcount has been shown
to be bounded by a constant (≈ 5) in an empirical study [16].
More recent work has suggested that Dcount has grown larger
(e.g., low 10s [23]), but it appears thatDcount is growing much
slower than n.

Skewness: A matrix is “skewed” if the ratio between its
maximum and minimum non-zero elements of the matrix
is high. Assuming a fixed period of demand accumulation,
skewed demand matrices are fundamentally less efficient for
a circuit-switched network to serve, since as the magnitude
of small demands decreases, the durations of the circuit con-
figurations required to service those demands becomes short
relative to the reconfiguration time, decreasing overall utiliza-
tion. In contrast, for hybrid networks, very small elements in
the demand are likely well served by the packet—rather than
circuit—switch.

3. OPTIMALITY
To better understand our heuristic algorithm’s results, we

construct an integer linear program (ILP) that computes an
optimal schedule. Though it is impractical for online use
or at scale, it effectively considers all possible permutation
matrices to determine which to use and for how long and it
provides a useful and exact lower bound for comparison with
other approaches.

3.1 Formulation
Starting from a large candidate set of circuit switch

configurations (i.e., all n! binary permutation matrices),
{P1, . . . , Pn!}, our goal is to compute {t1, . . . , tn!}, the time
spent in each (potential) configuration Pi. Note that with a
large candidate set of configurations and a sparse demand
matrix, almost all ti will likely be zero, meaning that the
corresponding Pi are not used by the resulting schedule. We

min

(
n!∑
i=1

ti

)
+mδ

subject to:

1) E +
∑n!

i=1 rctiPi ≥ D
2) ∀i :

∑n
j=1Ei,j ≤ rpT

3) ∀j :
∑n

i=1Ei,j ≤ rpT
4) ∀i : ti ≤ max(D)li

Figure 2: An ILP to find optimal schedules for a hybrid switch.

define a binary indicator variable li that denotes whether
configuration Pi is employed by the solution (i.e., its corre-
sponding ti is non-zero). The number of configurations used
in the schedule, m, is then

m =

n!∑
i=1

li.

The remainder of the demand matrix D not serviced by the
m selected circuit switch configurations forms E, the n× n
matrix served by the packet switch.

Figure 2 shows the ILP, which minimizes the total length
of the schedule (i.e., duration of the configurations plus the
switching overhead; T in Table 2) subject to four constraints.
The first three are effectively identical to those in Table 2. The
final technical constraint ensures we incur a reconfiguration
delay only for permutations included in our final schedule.

3.2 Candidate permutations
An obvious challenge with this approach is that it considers

all n! possible circuit configurations. Although modern ILP
solvers (e.g., Gurobi [11]) are very fast, n! is impractical for
n on the order of modern switch port counts (e.g., at least 48).
Even considering all possible configurations for a 16-port
switch would require more than 4 petabytes of memory.

Fortunately, it is possible to consider only a much smaller
set of configurations and still maintain optimality. We observe
that for a given (sparse) demand matrix D, most possible
circuit configurations connect two nodes with no demand.
Removing these “useless” links yields a partial configuration
we refer to as a class. Many configurations yield the same
class and, thus, are redundant; we need to keep only one
example from each class. Moreover, when comparing two
classes, one class may be a strict superset of another, meaning
the subset class is redundant, so we can remove it as well.

We employ a straightforward dynamic programming-based
algorithm (omitted for space) to generate an example con-
figuration from each class. Although we avoid generating
all n! permutation matrices, we find that class generation
still produces O(n!) candidate permutations—though it does
so with a constant speedup of ∼100×. Even so, solving a
small-scale (e.g., 12-port) ILP still takes around 5 minutes
on our hardware (see Table 3 in §5), and thus we require
an approximation algorithm that can provide nearly optimal
results quickly at scale.

Algorithm 1: Birkoff-von Neumann decomposition
input :k-bistochastic matrix D

link rate for circuit switch: rc
output :m circuit configurations and durations: {Pi}, {ti}
i← 1
while D > 0 do

B ← BinaryMatrixOf(D)
Interpret B as a bipartite graph of senders to receivers.
Find a perfect matching Pi of B.
Interpret Pi as a permutation matrix.
ti ← min{Da,b | Pia,b = 1}/rc
D ← D − rctiPi

i← i+ 1
end
m← i− 1

4. SOLSTICE
The classical approach to scheduling crossbar circuit

switches is Birkoff-von Neumann decomposition (BvN) [3].
BvN produces a schedule of at most n2 configurations and as-
sociated durations that fully satisfies the given demand. BvN,
however, is inappropriate for our target network environment
for two reasons. First, BvN uses solely the circuit switch,
whereas a hybrid scheduler must effectively use the packet
switch. Second, BvN does not try to minimize the number of
configurations, which is necessary in practice to avoid expen-
sive reconfiguration delays. We address these shortcomings
by developing Solstice, a heuristic-based scheduling algo-
rithm targeted for the hybrid case. Solstice is closely related
to BvN, so we first review BvN scheduling.

4.1 Birkoff-von Neumann scheduling
The Birkoff-von Neumann theorem forms the theoretical

underpinning of BvN decomposition [3]. BvN assumes a
non-negative square input matrix D that is k-bistochastic,
meaning that each row and column of D sums to the same
value k. The BvN theorem states that all k-bistochastic matri-
ces can be decomposed into a set of at most n2 permutation
matrices and corresponding non-negative durations which
sum to k. The steps for doing so are shown in Algorithm 1.
While real demand matrices are not typically k-bistochastic,
a pre-processing step can make them k-bistochastic (e.g.,
Sinkhorn’s algorithm [24]) by adding artificial demand.

One alternative to inserting artificial traffic into the de-
mand matrix would be to employ an algorithm that could
decompose non-k-bistochastic matrices by considering par-
tial circuit configurations (i.e., configuring only a subset of
ports). Such an algorithm would have to consider all possible
subsets of the n2 port pairs (of which there are 2n

2

), which
is currently an open problem [12, 21, 25].

Unfortunately, for demand matrices with high skew like
those found in practice, BvN decomposition will often pro-
duce schedules with a large number of configurations. Many
of these configurations will have short durations (e.g., on the
order of the reconfiguration delay, δ), leading to low overall
efficiency. The crux of the issue is that BvN must serve every
demand eventually, which means that configurations with low
duration (and thus low efficiency) must be used eventually.

Algorithm 2: Solstice
input :The demand: D, reconfiguration delay: δ,

link rate for circuit switch: rc,
link rate for packet switch: rp

output :m circuit configurations and durations: {Pi}, {ti},
demand sent to packet switch: E

E ← D
D′ ← QuickStuff(D)
T ← 0
r ← largest power of 2 smaller than max(D′)
i← 1
while ∃ row or column sum of D′ > rpT do

Pi ← BigSlice(D′, r)
if Pi 6= NULL then

ti ← min{D′
a,b | Pia,b = 1}/rc

D′ ← D′ − rctiPi

E ← E − rctiPi

E ← ZeroEntriesBelow(E, 0)
T ← T + ti + δ
i← i+ 1

else
r ← r/2

end
end
m← i− 1

If some demand can be ignored—or served by the packet
switch in a hybrid network—then the focus of the scheduling
algorithm shifts towards finding configurations that can be
used for long time durations, thus, increasing efficiency.

4.2 Solstice algorithm
Our initial assumptions about the demand matrix (namely

sparsity and skewness; see §2.3) motivate our scheduler’s
design. Despite BvN’s potential to generate O(n2) configura-
tions, a sparse demand matrix lowers this to O(n) (assuming
sparsity is bounded by a constant). This motivates using
BvN as a basis for Solstice, as fewer configurations lead to
less reconfiguration delay. The high skew of our demand
matrices implies easier separability into “big” (circuit) and
“small” (packet) demands in a hybrid environment, motivating
a greedy heuristic to select configurations with large durations
for the circuit switch.

We now present the Solstice hybrid scheduling algorithm,
shown in Algorithm 2. Solstice consists of two stages: a
round of stuffing followed by multiple iterations of slicing.
Stuffing takes an arbitrary demand matrix D and adds arti-
ficial demand to compute D′ which is k-bistochastic. Slic-
ing builds on BvN, leveraging the decomposability of k-
bistochastic matrices to iteratively compute a schedule of
configurations with long durations, greedily avoiding short,
inefficient configurations. Solstice terminates when the de-
mand not yet satisfied in the current (iteratively computed)
schedule is small enough to be satisfied by the packet switch.

In addition to computing the m circuit configurations {Pi}
and durations {ti}, each iteration of Solstice’s slicing main-
tains three additional variables: r, T , and E, consistent with
our notation in §2.2.1. r is a threshold for the current iteration
(see §4.2.2), and T is the total time used by circuit configu-

Function QuickStuff
input :Demand matrix D
output :k-bistochastic matrix D′

D′ ← D
{Ri} ← The sums of each row in D′

{Ci} ← The sums of each column in D′

φ← max({Ri} ∪ {Ci}).
for each D′

i,j > 0 do
add φ−max(Ri, Cj) to D′

i,j , Ri, and Cj

end
for each D′

i,j = 0 do
add φ−max(Ri, Cj) to D′

i,j , Ri, and Cj

end
Return D′.

rations computed so far. E is an n× n matrix encoding the
amount of residual demand not serviced by the configurations
computed so far. At termination, any demand left in E will
be scheduled on the packet switch.

4.2.1 Stuffing
Stuffing is a heuristic pre-processing step that converts the

demand matrix D into a k-bistochastic matrix D′ by adding
artificial demand. As explained in §4.1, the BvN theorem
proves the existence of a simple decomposition (i.e., sched-
ule) of a matrix as long as the matrix is k-bistochastic. A
naive stuffing approach is to go through each Di,j in order
and increase its value (“stuff” it) until either the sum of row
i or the sum of column j reaches k. Iterating over the ele-
ments of D, eventually all row/column sums will be k, as
required. This approach is suboptimal because the entries of
D that are increased may be entirely entries that were zero
originally, making the matrix less sparse (leading to more
costly reconfigurations).

A better approach would be to stuff the largest elements of
D first, as the artificial demand needed to stuff these elements
would be proportionally smaller; this approach, however, is
computationally expensive. Solstice, instead, uses the stuff-
ing function is listed in Function QuickStuff. Instead of
sorting all the elements, QuickStuff simply stuffs the non-
zero elements of D in arbitrary order, providing a reasonable
approximation. Afterwards, the zero elements are visited
in order to stuff any elements that still need to be stuffed.
Focusing on non-zero elements first helps (in the average
case) keep the resulting matrix sparse. In practice, Quick-
Stuff keeps the sparsity of D′ similar to D, but we leave the
theoretical analysis of its worst case to future work.

4.2.2 Slicing
After stuffing, Solstice enters its second stage, which is

conceptually similar to BvN’s main loop: finding the next
circuit configuration and its corresponding duration. We call
this process slicing. Examining all possible configurations
has no known polynomial-time algorithm; Solstice picks
one greedily. Solstice differs from BvN in that it selects
configurations with long corresponding durations to amortize
the reconfiguration penalty and keep utilization high. Also,

Function BigSlice
input :k-bistochastic matrix D′, threshold r
output :A permutation matrix P s.t.

{D′
a,b | Pa,b = 1} ≥ r

D′′ ← ZeroEntriesBelow(D′, r)
B ← BinaryMatrixOf(D′′)
Interpret B as a bipartite graph of senders to receivers.
if ∃P , a perfect matching of B then

return P interpreted as a permutation matrix.
else return NULL ;

unlike BvN, Solstice terminates once unscheduled traffic can
be feasibly forwarded by the packet switch.

Each iteration of slicing, shown in Function BigSlice, takes
as input a (stuffed) matrix D′ and a threshold r and returns a
circuit configuration Pi such that when D′ is overlayed onto
the links in Pi, each link has at least r bits ready to send. If
no such configuration Pi exists, NULL is returned. If we
interpret D′ as a bipartite graph of senders and receivers, Sol-
stice effectively tries to find a Max-Min Weighted Matching
(MMWM), which is the perfect matching (i.e., a matching
of size n) with the largest minimum element. Like BvN, a
particular circuit configuration’s duration is set based on the
minimum element for that configuration.

The MMWM search is iterative: Slicing starts with a high
threshold (r) of the largest power of 2 smaller than the max-
imum element in the stuffed demand matrix and then tries
to find an arbitrary perfect matching on the stuffed demand
matrix where values less than the threshold are ignored. Thus,
any perfect matching returned will have corresponding dura-
tion at least r/rc.

Solstice keeps looking for perfect matchings using the
same threshold until there are no longer any perfect matchings
with this threshold. At that point, the threshold is reduced
by half. An optimal MMWM algorithm would consider
all O(max(D′)) different thresholds; Solstice considers an
exponentially spaced set of them.

Slicing ends when the packet switch has enough capacity
to handle the remaining demand. Solstice tracks the (so-
far) unsatisfied demand using matrix E. Another variable
T keeps track of the total time spent sending data over the
circuit switch, as well as the time spent reconfiguring (i.e.,
T = (

∑m
i=1 ti)+mδ). Once the total time T is large enough

that the packet switch can handle the leftover demand E,
Solstice terminates. When the algorithm terminates, no link
on the packet switch—row or column sums in E—is required
to send more than rpT . As stuffing never increases the max
row/column sum, we know that the max row/column sum
of E and D′ are always the same, allowing us to use them
interchangeably in the loop termination condition. Phrased
differently, Solstice terminates when roughly (rp/rc) of the
traffic is allocated to the packet switch.

4.3 Example
For clarity, we now describe how Solstice operates on the

simple demand matrix in Figure 3, with δ = 1, rp = 0.1,
rc = 1. We define the diameter of a matrix, Ddiameter as the

 . . . 70 .
 69
71
 . 70 . . .
 . . 69 . .

 . 11 . . .
 . . 11 . .
 . . . 11 .
 11
 11

 . 3 . 1 4
 . . 6 2 .
 2 . . 2 4
 5 1 2 . .
 1 4 . 3 .

Slicing: r = 64

D’ = Residual

Demand D

 . 13 10 70 4
 . . 14 12 69
65 . . 12 14
15 33 2 . 11
12 7 3 1 .

 . 14 10 70 4
 . . 17 12 69
71 . . 13 14
15 70 2 . 11
12 14 69 3 .

After Stuffing:
D’ =

 . . . 69 .
 69
69
 . 69 . . .
 . . 69 . .

 . . 10 . .
 . . . 10 .
 10
 10
 . 10 . . .

 . 14 10 1 4
 . . 17 12 .
 2 . . 13 14
15 1 2 . 11
12 14 . 3 .

 . 14 10 . .
 . . 17 12 .
 . . . 13 14
15 . . . 11
12 14 . . .

Slicing: r = 8

T = 0 (0.0); D’diameter = 98

T = 70 (7.0); D’diameter = 29

T = 93 (9.3);
D’diameter = 8

D’ = Residual

+

→

→

≈

≈

Roughly demand
to Packet Switch

Figure 3: A sample execution with δ = 1, rp = 0.1, rc = 1.
Solstice computes a circuit schedule with 3 configurations with a
total time of T = 69 + 11 + 10 + 3δ = 93, and at most 8 bits of
demand sent over each packet switch link. The values in parentheses
show rpT .

maximum row or column sum. The input demand matrix D
has a diameter of 98 (the second row sum), so D is stuffed
to obtain a matrix D′ where each row and column sum is
98 (i.e., D′ is k-bistochastic, with k = 98). In the first
iteration, Solstice considers a minimum duration of r = 64
by extracting the subset of elements of at least that size. That
subset admits only one perfect matching with a minimum-
sized element of 69, so the duration of the first configuration
is determined to be 69. It subtracts the demand from the
stuffed matrix, D′. The total time is now T = 69/rc + 1δ =
70. If rpT (here 7) is greater than the diameter of D′ (29),
we could leave the rest to the packet switch. Unfortunately,
this is not yet the case, so the algorithm continues to consider
thresholds of exponentially decreasing size.

At r = 32 there are no elements considered, as none
are larger than 32. At r = 16, one element is considered.
As Solstice looks for perfect matching, at least n elements
need to be considered, so the threshold is reduced again.
Once r = 8, D′ finally admits another perfect matching.
This time, there are two: the first perfect matching BigSlice
identifies has a minimum element of size 11, and the second
matching it identifies has size 10. After accounting for the
demand serviced by both of these configurations, the total
time becomes T = 69/rc + 11/rc + 10/rc + 3δ = 93, at
which point we can schedule the rest on the packet switch (as
8 ≤ 9.3), allowing Solstice to avoid scheduling the “long tail”
of demands on the circuit switch, leading to high utilization.
The actual demand sent to the packet switch, E, is slightly
less than the residual D′, as D′ is the result of stuffing. The
actual values for E are omitted for brevity.

4.4 Worst case
For very sparse matrices, Solstice performs nearly opti-

mally (see §5.5); however, a very sparse demand matrix fun-

damentally has fewer viable circuit configurations to choose
from, simplifying scheduling. A very dense demand matrix
may appear difficult to schedule, but is simple as well; an all-
to-all workload can be scheduled efficiently using weighted
round robin (i.e., n schedules). Solstice correctly identifies
this, as we show in §5.5, and uses exactly n schedules.

The extremes of skew also may appear problematic, but are
similarly straightforward to schedule. Demand matrices with
very high skew reduce to the simple problem of identifying
large flows (for the circuit switch) and small flows (for the
packet switch). Very low skew is more efficiently solved
through weighted round robin, similar to above.

The analysis of Solstice’s worst case (both in terms of
schedule duration and number of configurations) is currently
unknown, because of the difficulty in characterizing the types
of workloads for which Solstice does poorly. The regions
between these extremes, both for sparsity and skew, appear
to not have simple solutions. Thus, we base our evaluation
(§5) on these difficult regions. It is currently unclear how
to mathematically characterize these regions exactly, so we
leave the analysis of Solstice’s worst case as future work.

Finally, as Solstice always schedules all traffic in the de-
mand matrix completely, each demand matrix over time is
completely independent. Thus, inter-demand matrix patterns
(e.g., alternating structure across matrices) are not a problem
for Solstice.

4.5 Time complexity
QuickStuff runs in O(n2) time. Unfortunately, it is possi-

ble that QuickStuff will output a matrix with less sparsity, i.e.,
D′count (the maximum number of non-zero elements in a row
or column of D′) may be greater than Dcount, as stuffing may
add to entries that were zero. In the general case, D′count may
approach n. For input matrices with low sparsity, however,
our experience shows that it is rarely substantially larger, as
QuickStuff focuses on stuffing non-zero entries.

BigSlice itself is dominated by the matching algorithm step.
Goel et al. propose a randomized matching algorithm [9]
that, in expectation, takes O(|V | log2 |V |) plus a one-time
preprocessing step of O(|E|), or in our terms O(n log2 n)
and O(nD′count). In the worst case D′count = n, resulting in
an initial O(n2) preprocessing step.

In the worst case, BigSlice will need to try O(nD′count)
different thresholds (i.e., max(D) is certainly less than
2nD

′
count) and may additionally need O(nD′count) successful

calls to BigSlice that generate configurations (i.e., each
schedule zeros only one element of the matrix), thus requir-
ing O(nD′count + nD′count) = O(nD′count) calls to BigSlice.
In total, slicing takes O(nD′count + nD′count ∗ n log

2 n) =

O(D′countn
2 log2 n), which falls into line with Goel’s analy-

sis for BvN.
Stuffing takesO(n2) and slicing takesO(D′countn

2 log2 n);
other smaller steps either take O(1) or O(nD′count)
time. Thus, the overall complexity of Solstice is
O(D′countn

2 log2 n). It is possible that D′count can be n due to
stuffing, leading to O(n3 log2 n). Empirically, we find D′count
is effectively constant, yielding O(n2 log2 n).

5. EVALUATION
We evaluate the performance of Solstice along three dis-

tinct dimensions to answer the following questions:

1. Utilization: How does Solstice perform compared to
classic algorithms for switches of varying port count?
(Solstice performs up to 2.9× better than BvN.)

2. Skew: How does Solstice handle varying the weight of
small demands? Is high skew required for Solstice to
perform well? (Solstice performs only 10% worse with
low skew compared to our baseline.)

3. Sparsity: How does Solstice handle very sparse and very
dense matrices? Are sparse matrices required for Solstice
to perform well? (Solstice performs only 26% worse in a
completely filled matrix compared to our baseline.)

Additionally, we reflect on Solstice’s performance by consid-
ering whether there are simple ways to improve upon it and
how it would function as a non-hybrid circuit scheduler.

5.1 Bounds
As the ILP presented in §3 is too slow to compute for port

counts larger than ∼12, it is difficult to compare Solstice
against the truly optimal schedule duration (T) for a given
demand matrix D. However, it is possible to provide weak
lower and upper bounds on the optimal T .
Lower bound: We mathematically derive a weak lower
bound. As it is a lower bound, it is impossible to build a
schedule that completes in less time. However, it is weak in
the sense that it might not be possible to build a schedule that
completes in that amount of time. We provide intuition for
the lower bound by starting with a purely circuit switched
network, LBc:

LBc = Ddiameter/rc +Dcount ∗ δ.

Serving demand D on a pure circuit switch requires at least
as much time as the largest row or column sum, Ddiameter,
divided by the link rate. It also requires at least as many
configurations as the largest row or column count, Dcount,
each incurring a reconfiguration penalty of δ.

For a hybrid switch, we relax our assumption that we need
Dcount configurations (as in some cases the count of every
row and column may be reduced to one or zero by sending
data over the packet switch). Thus, we weaken the bound
to only one reconfiguration penalty (δ). Moreover, with the
addition of a packet switch, the total amount of time needed
can be reduced proportionally:

LBh = (rc/(rc + rp)) ∗ (Ddiameter/rc + δ).

For example, let the link rate of the circuit switch rc = 10,
and the link rate of the packet switch rp = 1. For every 11
units of demand that come in, 10 can be sent to the circuit
switch and 1 can be sent to the packet switch, while overall
taking 10 units of time. Thus, multiplying our previous lower
bound by rc/(rc + rp) = 10/11 accounts for the inclusion
of the packet switch.
Upper bound: All correct scheduling algorithms provide
upper bounds on the optimal T . Once we have computed a

Algorithm Runtime

Lower bound < 1 ms (64 ports)
BvN 27 ms (64 ports)

iSLIP 13 ms (64 ports)
Solstice 2.9 ms (64 ports)

Solstice++ 5 min (64 ports)
Optimal 5 min (12 ports);�11hours (16 ports)

Table 3: The runtime of each scheduling approach on an Intelr

Xeonr E5-2680 v2 (2.8 GHz) processor with 128 GB of memory.

schedule, we never need to consider any schedules with a
longer duration (i.e., the schedule is an upper bound on all
schedules that serve D). We optimize the schedule produced
by Solstice (in a tractable but non-realtime manner) to provide
a weak upper bound on the optimal T . It is weak in the sense
that it provides a feasible solution, but not necessarily the
best possible solution. It is, however, the best upper bound
of which we are aware, as it always produces a schedule no
worse than Solstice, and we are not aware of any algorithm
that provides better schedules than Solstice for the hybrid
scheduling problem.

We observe that schedules computed by Solstice can be
optimized by using the resulting configurations (but ignoring
their durations) as the candidate permutations for the ILP
from §3. In addition, we enhance the candidate set with a
small number of randomly generated permutations. The ILP
will clearly produce a schedule no worse than that selected by
Solstice, but frequently is able to compute better durations,
“throw away” some steps in the schedule, and occasionally
determine that one of the random permutations is a better
choice (i.e., Solstice explored a local minimum in its search).
Because this process involves solving an ILP, it is imprac-
tical for use as a scheduler. However, by iterating through
this process several times (10 in our simulations), we can
often improve Solstice. We call this scheduling algorithm
Solstice++.

5.2 Simulation setup
Unless otherwise specified, our simulations consider a

hybrid switch with 64 ports consisting of a 100-Gbps (per
link) circuit switch with a reconfiguration time of 20 µs and a
10-Gbps (per link) packet switch (a 10:1 ratio). We consider
scheduling 3 ms of demand at a time (as in ReacToR [19])
and assume demand matrices are sparse (4 large demands
and 12 small demands per port) and skewed (small demands
only make up 30% of total demand). We test sensitivity to
each of these parameters in our evaluation.

We compare six different scheduling approaches: three
practical scheduling algorithms—BvN (§ 4.1), Solstice, and
an improved1 version of iSLIP (a classical crossbar schedul-
ing algorithm designed to be starvation free and easy to im-
plement [20])—and three bounds: the optimal schedule com-
puted (when tractable) by an ILP (§3), our lower bound on
the optimal schedule duration, and an upper bound on the

1iSLIP can produce schedules with repeated configurations. We
merge all duplicate configurations into one with a longer duration.

8 12 16 32 64 128
Number of ports

0

2

4

6

8

10

12

14

16

Ti
m

e
(m

s)

2.
7

2.
8

2.
9 3.

6

8.
7 9.

1

3.
5 3.
9

4.
2

6.
0

10
.9

11
.3

2.
7

2.
7

2.
7

2.
8 3.
1 3.

7

2.
7

2.
7

2.
7

2.
8 3.
0 3.

5

2.
7

2.
7

BvN iSLIP Solstice Solstice++ Optimal

(a) Total time

8 12 16 32 64 128
Number of ports

0

50

100

150

200

N
um

co
nfi

gs

3.
5 7.
0 10

.7

36
.9

12
0.

4

12
9.

5

12
.6

33
.9 50

.0

98
.6

13
2.

0

11
4.

4

2.
0

3.
2

4.
3 9.

1

23
.7

52
.7

2.
0

3.
2

4.
3 8.

4

19
.9

42
.6

2.
0

3.
0

BvN iSLIP Solstice Solstice++ Optimal

(b) Number of configurations

8 12 16 32 64 128
Number of ports

0

20

40

60

80

100

U
til

iz
at

io
n

(%
)

86
.8

88
.8

87
.4

72
.5

28
.8

25
.6

41
.1

44
.1

46
.1

37
.9

22
.7

19
.7

87
.6

89
.7

91
.5

91
.1

82
.9

68
.9

87
.6

89
.6

91
.1

91
.2

84
.5

71
.8

87
.4

89
.5

BvN iSLIP Solstice Solstice++ Optimal

(c) Circuit switch utilization

8 12 16 32 64 128
Number of ports

0

20

40

60

80

100

U
til

iz
at

io
n

(%
)

76
.9

80
.7

76
.1

60
.1

39
.2

60
.1

85
.5

86
.6

84
.2

72
.8

33
.2

55
.6

85
.0

84
.1

83
.7

81
.5 86

.9 93
.385

.0

85
.7

87
.6

84
.4

86
.0 90

.487
.1

87
.7

BvN iSLIP Solstice Solstice++ Optimal

(d) Packet switch utilization

Figure 4: The performance of different scheduling approaches. Each bar represents the average of 100 runs; error bars show standard
deviation. The dashed line represents a weak lower bound on optimal schedule duration. True optimal is somewhere between the dashed line
and Solstice++.

optimal schedule duration computed by Solstice++. As both
BvN and iSLIP are iterative algorithms, we iterate until the
residual demand is small enough to be served by the packet
switch. For context, example runtimes of each approach are
listed in Table 3.

Demand: We construct traffic demand matrices based upon
skew and sparsity characteristics derived from published data-
center workloads, but with significantly higher overall traffic
demands to stress the scheduler. We base the matrix generator
on traces from the University of Wisconsin [2] and Alizadeh
et al. [1]. The Wisconsin study provides two one-hour traces
of traffic among 500–1000 servers. Examining the traffic
matrices for each 3-ms window of traffic in this trace, the
maximum number of non-zero elements in a matrix are just
36 and 85 (out of 500 and 1000 servers, respectively). The
links for most hosts are mostly idle, and no host exchanges a
large flow with more than five other hosts in a window. The
Alizadeh work describes flow behavior and size distributions
of a workload combining query traffic (one host sends to all
other hosts) and background flows from other applications.
Even when scaling this workload to be five times more dense,
there are a maximum of seven concurrent large background
flows per host in a 3-ms window (the paper shows at most
four concurrent large flows per host in a 50-ms window). The
small flow query traffic consumes about 10% of the switch
capacity, and the large background flows use about 30%.

Constructing matrices from the demand model: To gen-
erate demand matrices that match the distributions above,

we generate workloads that have a fixed number of flows
per source port. The default value is for 4 large flows and
12 small flows, which we vary in our evaluation of sparsity
(§5.5). By default, for a given link, the large flows are given
70% of the link bandwidth (to split evenly) and the small
flows are given 30% (to split evenly), which we vary in our
evaluation of skew (§5.4). To avoid completely saturating
each link, we scale the result back to 96% of the total link
bandwidth. Finally, the demands are perturbed with noise by
adding ±0.3% of the link bandwidth.

The destination of each flow is selected in one of two
ways: controlled or random. By default, we construct de-
mand matrices in a controlled fashion by assigning flow des-
tinations through combining multiple randomly generated
circuit configurations (i.e., permutation matrices). The re-
sulting matrices are “controlled” as they have structure in
their communication and closely match the workloads upon
which we base our traffic models, but are also somewhat
easier to schedule (the solution involves decomposing the
demand back into the original circuit configuration, though
this is not strictly possible due to the addition of noise). For
comparison, we also evaluate workloads where destinations
are assigned in a purely random fashion (§5.4.2).

5.3 Utilization
We begin by considering how effectively Solstice sched-

ules demand—i.e., the utilization it is able to achieve—as
switch port count increases from 8 to 128. We show the re-
sults (Figure 4) in terms of total time to satisfy all demand,

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 37.5 40 42.5 45 47.5 50
Bandwidth requested by small flows (%)

2.0
2.5
3.0
3.5
4.0
4.5

Ti
m

e
(m

s)

2.
7 2.
8 2.
9 2.
9

3.
0

3.
0

3.
0

3.
0

3.
0 3.
1

3.
1 3.
1

3.
1

3.
1

3.
1

3.
1

3.
2

3.
2

3.
2

3.
2

3.
3

2.
7

2.
7

2.
7 2.
7

2.
8 2.
9

2.
9

2.
9

3.
0

3.
0

3.
0 3.
1

3.
1

3.
0

3.
0

3.
1

3.
1 3.
1

3.
1

3.
2

3.
2

Solstice Solstice++

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 37.5 40 42.5 45 47.5 50
Bandwidth requested by small flows (%)

0
10
20
30
40
50
60

N
um

co
nfi

gs

4

7

11

14 17 16 17 19 19

22 25

27

24 22 24 25 27 29 30 31 32

4 4 4

5 7

10 12 14 15 16 19

21 20 20 20 20 21 22 22 23

27

Solstice Solstice++

Figure 5: Total time (top) and number of configurations (bottom) as a function of controlled skew. Each bar represents the average of 25 runs;
the error bars show standard deviations. Note the top y-axis starts at 2 ms. The dashed line represents a weak lower bound on optimal schedule
duration. True optimal is somewhere between the dashed line and Solstice++.

the inverse of utilization. In order to understand why each
approach performs as it does, we also plot the number of
circuit configurations each includes in its schedule and the
resulting utilization on both the circuit and packet switches.

Total time: Figure 4(a) plots the lower bound on optimal
(LBh) as a horizontal dashed line. We continue this con-
vention throughout our evaluation. Recall that Solstice++ is
an upper bound on optimal. This means that true optimal is
somewhere between the dashed line and Solstice++.

For small scales (8 and 12 ports), we see that both Solstice
and BvN achieve the lower bound, which turns out to be tight
(Optimal performs no worse). We cannot compute Optimal at
medium scales (16 and 32 ports), but Solstice is only slightly
slower than the lower bound. Moreover, it performs similarly
to Solstice++, suggesting that perhaps the lower bound is no
longer tight. At larger scales (64 and 128 ports) we start to see
divergence between Solstice and Solstice++. Despite further
diverging from the lower bound, it is worth reiterating that
the lower bound is loose; it is likely that Optimal would also
diverge from the lower bound if it were tractable to compute
at larger scales. For comparison, off-the-shelf algorithms
BvN and iSLIP perform well until large scales, where they
perform almost 3× worse than Solstice.

Number of configurations: While Solstice performs as
well as Optimal at small scale, the number of configurations
starts to diverge at as early as 12 ports (Figure 4(b)). Simi-
larly, Solstice uses more configurations than Solstice++ at 64
ports—but only slightly increases the total time due to the
relatively small configuration penalty. The takeaway is Sol-
stice includes a few redundant configurations (a point we will
explore in §5.6), but the redundancy does not substantially
impact the efficiency of the schedule.

Looking at how many configurations are produced by each
algorithm provides insight into BvN and iSLIP’s poor per-
formance. Both use a large number of configurations as they
do not consider the reconfiguration penalty. We know of no
mathematical assurance on how many configurations BvN
produces in the average case. While iSLIP’s running time

(Table 3) is less than half of BvN, its often produces many
more configurations.

Utilization Breakdown: We plot the utilization of both the
circuit switch and packet switch in Figures 4(c) and 4(d),
respectively. We see that Solstice performs similarly
(∼80–90% circuit utilization) to Solstice++ (and Optimal,
where available) between 8–64 ports. At our largest scale,
128 ports, circuit utilization drop precipitously. This is the di-
rect result of the large increase in reconfigurations at this scale
(Figure 4(b)): The 20% increase in the number of configura-
tions generated by Solstice when compared to Solstice++ is
reflected here as a 3% decrease in circuit utilization.

5.4 Skew
Solstice is designed to take advantage of skew in demand

across flows, tailoring its heuristics to schedule workloads
consisting of a small number of flows with (relatively) large
demands among a background of many more flows with small
demands. Here, we explore the behavior of Solstice under
varying degrees of demand skew among a fixed number of
flows. We explore skew for workloads where the destinations
are selected by generating random circuit configurations (con-
trolled) and where they are selected randomly.

5.4.1 Controlled skew
Figure 5 shows the total time (top) and number of circuit

configurations (bottom) used as the skew changes. As ex-
pected, Solstice produces longer schedules when more traffic
is used by the small flows, because the switch must be recon-
figured more often to support them. Conversely, with little
traffic in small flows, they can be completely tossed to the
packet switch and the circuit switch only reconfigured for the
number of large flows (i.e., 4).

Because the number and size of the demands stay the same
across the experiments (modulo matrices where small and
large demands overlap), the maximum row or column sum
(Ddiameter) and the maximum number of non-zero elements
(Dcount) stay the same, explaining the constancy in the lower
bound (dashed line). Notably, Solstice++ deviates from the

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 37.5 40 42.5 45 47.5 50
Bandwidth requested by small flows (%)

2.0
2.5
3.0
3.5
4.0
4.5

Ti
m

e
(m

s)

2.
8

2.
8 2.
9 3.
0 3.
1

3.
1

3.
1

3.
1 3.
2

3.
2

3.
2

3.
1

3.
0 3.
1

3.
1

3.
2

3.
2

3.
2

3.
2 3.
3 3.
3

2.
8

2.
8 2.
9 2.
9 3.
0

3.
0

3.
0

3.
0

3.
1

3.
1

3.
1

3.
0

3.
0

3.
0

3.
0

3.
0

3.
1

3.
1

3.
1

3.
2 3.
2

Solstice Solstice++

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 37.5 40 42.5 45 47.5 50
Bandwidth requested by small flows (%)

0
10
20
30
40
50
60

N
um

co
nfi

gs

20 21

26

31

35 36 35 35

40 42 40

35

32

35 37 38 39 40 41

44

49

17 18 20

25

29 30 30 30 31 32 31 29 27 27 28 28

32 34 34 36 38

Solstice Solstice++

Figure 6: Total time (top) and number of configurations (bottom) as a function of random skew. Each bar represents the average of 25 runs;
the error bars show standard deviations. Note the top y-axis starts at 2 ms. The dashed line represents a weak lower bound on optimal schedule
duration. True optimal is somewhere between the dashed line and Solstice++.

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Number of demands per port

2.0
2.5
3.0
3.5
4.0
4.5

Ti
m

e
(m

s)

2.
7 2.
8 3.

0 3.
1 3.

2

3.
3

3.
3 3.

5 3.
6

3.
6

3.
6

3.
7

3.
7

3.
7 3.
8 3.
9

2.
7 2.
8 2.
9 3.
0 3.
1

3.
2

3.
2 3.

4

3.
5 3.
5

3.
5

3.
5

3.
5

3.
5 3.
6 3.
7Solstice Solstice++

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Number of demands per port

0
10
20
30
40
50
60
70

N
um

co
nfi

gs

4

9

17

23

31 32 33

47

49 51 52 53 53 53

59

64

4

8

13

19

23 26 27

38 40

42 42 42 41 41

47

52

Solstice Solstice++

Figure 7: Total time (top) and number of configurations (bottom) as a function of sparsity. Each bar represents the average of 25 runs; the
error bars show standard deviations. Note the top y-axis starts at 2 ms. The dashed line represents a weak lower bound on optimal schedule
duration. True optimal is somewhere between the dashed line and Solstice++.

lower bound, suggesting that our lower bound may become
more and more loose, which is intuitively correct; as the
demand becomes less skewed, it is harder to remove traffic
by tossing it to the packet switch. Effectively, less skewed
demand is fundamentally less efficient to schedule.

5.4.2 Random skew
Unlike the previous experiment, here we randomize the

source-destination pairs used to create the demand matrices
rather than generating them from circuit configurations. Fig-
ure 6 shows the results in terms of time (top) and number of
configurations (bottom). We see a similar gap between Sol-
stice and Solstice++ in terms of the number of configurations,
with commensurate increases in total time. We note again
that the lower bound (dashed line) is constant as the diameter
and count of the matrices remain constant.

Randomness affects the absolute magnitude of the num-
ber of configurations quite strikingly when compared to the
controlled skew experiments—as much as 5× the number of
large demands per port when skew is high (i.e., when small

flows request no bandwidth). Random demand is harder to
separate into a small number of circuit configurations, as it
was not originally drawn from a set of circuit configurations.
As more configurations are needed to solve these random
demand matrices, more total time is needed.

The key takeaway from both skew experiments is that
Solstice performs better (both absolutely and compared to
our lower and upper bounds) when the demand matrix is
skewed, but its performance does not decline drastically even
with skew is minimized.

5.5 Sparsity
Here, we adjust the sparsity of the demand matrix (by

varying the number of communicating pairs) to test Solstice’s
sensitivity to sparsity. We construct a demand matrix that has
k big flows and l = 3k small flows per source and destination
pair by randomly generating k + l circuit configurations. We
use the same calculation from §5.2 to allocate 30% of demand
to small flows. We vary k + l from 4 to 64 flows to reduce
the sparsity of the demand matrix. At 64 flows the matrix

is completely filled with non-zero entries. Fundamentally, a
dense matrix is easy to schedule for (i.e., use weighted round-
robin), but may require many reconfigurations, increasing the
total schedule time.

The results are shown in Figure 7, again as time (top)
and number of configurations (bottom). As the matrix gets
filled with more entries, more configurations are required.
In the extreme case where the matrix is completely filled
(64 demands), weighted round-robin (i.e., 64 configurations)
is roughly the best solution, as shown in the graph. We
again see that Solstice includes more configurations than
necessary (as indicated by Solstice++) but their inclusion only
marginally impacts the total time. We expect the number of
configurations to be roughly in line with the average number
of demands (modulo data sent over the packet switch), as we
see in the graph. We see that the total time increases much
faster than in the skew graphs, implying that Solstice is more
sensitive to sparsity than skewness.

5.6 Discussion
In addition to the simulation results presented above, we

consider additional extensions to Solstice but find they do
not substantially improve its performance. We also explore
whether Solstice is suitable as a traditional crossbar scheduler.

Improving Solstice: Solstice++ (as presented throughout
the evaluation) improves Solstice’s results by considering
multiple extra configurations and throwing away unneces-
sary ones. We find that the configurations Solstice++ deems
necessary are almost always (≥ 99.5%) a subset of the con-
figurations Solstice used. Phrased differently, there is rarely
benefit from considering configurations not identified by Sol-
stice, which motivates exploring whether one could improve
upon Solstice strictly by reconsidering how it employs the
configurations it computes.

However, we find using an LP (similar to the ILP presented
in §3) to adjust the time durations of Solstice’s configurations
without removing any does not provide improvement. This
implies that Solstice’s time selection is optimal. This makes
sense as it always uses the minimum element of a slice as its
time duration. QuickStuff minimally impacts scheduling, as
durations picked by Solstice are based on the stuffed matrix,
whereas the LP operates on the demand matrix directly.

Solstice on purely circuit networks: We re-run the uti-
lization experiments from Section 5.3 without the packet
switch—in other words, we consider Solstice’s performance
as a traditional crossbar scheduling algorithm. The results
are summarized in Table 4. Solstice performs much worse
in such an environment as it can no longer move small “long
tail” demands to the packet switch. Despite this, Solstice++
is able to perform much better by reducing the number of
configurations by ∼77%, or ∼5ms of reconfiguration time.
Solstice++ manages to do this by using longer, but more
inefficient, durations for some schedules, as the benefit of
avoiding additional configurations to clean up the tail greatly
outweighs the inefficiency. The gap between Solstice++ and
the lower bound also grows, hinting that the lower bound may
be very loose.

Algorithm 12 port 64 port 128 port

Lower bound 2.96 3.25 3.60
Solstice 3.20 (15.40) 6.54 (180.51) 9.56 (329.93)
Solstice++ 2.97 (3.21) 3.93 (34.53) 5.11 (75.80)
Optimal 2.96 (3.01) - -

Table 4: Performance for a purely circuit switch. Presented as total
time (in ms) followed by number of configurations in parentheses.
Each entry corresponds to an average over 100 runs.

6. RELATED WORK
The crossbar switch scheduling problem has been studied

for decades. The basic approach, often referred to as time
slot assignment (TSA), decomposes an accumulated demand
matrix into a set of weighted permutation matrices. Classical
results [3] and early work on scheduling satellite-switched
time-division multiple access (SS/TDMA) systems [14] show
how to compute a perfect schedule, but the resulting sched-
ules consist of O(n2) configurations. Although this approach
is optimal for a switch with trivial reconfiguration time, it
performs poorly in our network model.

On the opposite end of the spectrum, when reconfiguration
time is large, there exist algorithms [10, 26, 29] that use the
fewest possible number of configurations (n). For moderate
reconfiguration times, DOUBLE [26] computes a schedule
that requires twice the minimum number of configurations,
2n. Further improved algorithms [7, 18, 30] take the actual
reconfiguration delay into account. These algorithms, how-
ever, do not benefit from sparse demand matrices, continuing
to require O(n) configurations to cover the demand.

Other existing work uses a speedup factor (i.e., the ratio
of the internal transfer rate to the port link rate). Perhaps the
most well known example is iSLIP [20], which requires a
2× speedup to maintain stability. Many of these algorithms
perform poorly (i.e., introduce large delays) when the traffic
demand is skewed, leading others to suggest using random-
ization to address the issue [8].

7. CONCLUSION
The ever-increasing demand for low-cost, high-

performance network fabrics in datacenter environments
has generated tremendous interest in alternative switching
architectures. Researchers have proposed hybrid switches
that combine circuit and packet switching technologies but
have stopped short of addressing scheduling. We take the
first steps by characterizing the problem, exploring the space
of possible scheduling algorithms, and gleaning insights
based on their results. We craft an algorithm, Solstice,
that takes advantage of sparsity and skewness observed
in real datacenter traffic to provide 2.9× higher circuit
utilization when compared to traditional schedulers in hybrid
environments, while being within 14% of optimal, at scale.

Our evaluation of scheduling algorithms sheds light on
the challenges of scheduling for both hybrid and pure cir-
cuit networks. The performance gained by both Solstice and
the ILP-assisted formulations over traditional schedulers is
the result of the insight that inefficient short duration “tail”

configurations of traditional pure circuit schedules can be
efficiently handled by a packet switch. We believe this in-
sight can lead to the development of heuristic approximation
algorithms for the pure circuit case, which might leverage
indirection or careful cluster scheduling to avoid the need for
expensive n-to-n connectivity for small flows. These ideas
bear further theoretical and practical examination.

Acknowledgments
The authors would like to thanks the National Science Foun-
dation (NSF CNS-1314921 and CNS-1314721), Google
(Google Focused Research Award), Microsoft Research, and
Intel via the Intel Science and Technology Center for Cloud
Computing (ISTC-CC) for their support. Additionally, the
authors would like to thank Daniel M. Kane and Russell Im-
pagliazzo for their insight regarding crossbar scheduling, and
the anonymous reviewers for their feedback.

8. REFERENCES
[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,

B. Prabhakar, S. Sengupta, and M. Sridharan. Data Center
TCP (DCTCP). In Proc. ACM SIGCOMM, Aug. 2010.

[2] T. Benson, A. Akella, and D. A. Maltz. Network Traffic
Characteristics of Data Centers in the Wild. In Proc. ACM
IMC, Nov. 2010.

[3] G. Birkhoff. Tres Observaciones Sobre el Algebra Lineal.
Univ. Nac. Tucumán Rev. Ser. A, 1946.

[4] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu,
Y. Zhang, and X. Wen. OSA: An Optical Switching
Architecture for Data Center Networks and Unprecedented
Flexibility. In Proc. USENIX NSDI, Apr. 2012.

[5] N. Farrington, G. Porter, Y. Fainman, G. Papen, and
A. Vahdat. Hunting Mice with Microsecond Circuit Switches.
In Proc. ACM HotNets-XI, Oct. 2012.

[6] N. Farrington, G. Porter, S. Radhakrishnan, H. Bazzaz,
V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat. Helios:
A Hybrid Electrical/Optical Switch Architecture for Modular
Data Centers. In Proc. ACM SIGCOMM, Aug. 2010.

[7] S. Fu, B. Wu, X. Jiang, A. Pattavina, L. Zhang, and S. Xu.
Cost and Delay Tradeoff in Three-Stage Switch Architecture
for Data Center Networks. In Proc. IEEE High Perf.
Switching and Routing, July 2013.

[8] P. Giaccone, B. Prabhakar, and D. Shah. Randomized
Scheduling Algorithms for High-Aggregate Bandwidth
Switches. IEEE J. Sel. Areas in Comms., May 2003.

[9] A. Goel, M. Kapralov, and S. Khanna. Perfect Matchings in
O(n logn) Time in Regular Bipartite Graphs. In ACM STOC,
June 2013.

[10] I. S. Gopal and C. K. Wong. Minimizing the Number of
Switchings in a SS/TDMA System. IEEE Trans. Comms.,
June 1985.

[11] Gurobi. Gurobi Optimization. http://www.gurobi.com/.
[12] J. Haglund and J. Remmel. Rook Theory for Perfect

Matchings. Advances in Applied Math., Aug. 2001.

[13] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wetherall.
Augmenting Data Center Networks with Multi-gigabit
Wireless Links. In Proc. ACM SIGCOMM, Aug. 2011.

[14] T. Inukai. An Efficient SS/TDMA Time Slot Assignment
Algorithm. IEEE Trans. Comms., Oct. 1979.

[15] S. Kandula, J. Padhye, and P. Bahl. Flyways To De-Congest
Data Center Networks. In Proc. ACM HotNets-VIII, Oct.
2009.

[16] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and
R. Chaiken. The Nature of Data Center Traffic: Measurements
& Analysis. In Proc. ACM IMC, Nov. 2009.

[17] R. Kapoor, A. C. Snoeren, G. M. Voelker, and G. Porter.
Bullet Trains: A Study of NIC Burst Behavior at Microsecond
Timescales. In Proc. ACM CoNEXT, Dec. 2013.

[18] X. Li and M. Hamdi. On Scheduling Optical Packet Switches
with Reconfiguration Delay. IEEE JSAC, Sept. 2003.

[19] H. Liu, F. Lu, A. Forencich, R. Kapoor, M. Tewari, G. M.
Voelker, G. Papen, A. C. Snoeren, and G. Porter. Circuit
Switching Under the Radar with REACToR. In Proc. USENIX
NSDI, Apr. 2014.

[20] N. McKeown. The iSLIP Scheduling Algorithm for
Input-Queued Switches. IEEE Trans. Networking, Apr. 1999.

[21] Q.-K. Pan and R. Ruiz. A Comprehensive Review and
Evaluation of Permutation Flowshop Heuristics to Minimize
Flowtime. Comp. & Op. Research, Jan. 2013.

[22] G. Porter, R. Strong, N. Farrington, A. Forencich, P.-C. Sun,
T. Rosing, Y. Fainman, G. Papen, and A. Vahdat. Integrating
Microsecond Circuit Switching into the Data Center. In Proc.
ACM SIGCOMM, Aug. 2013.

[23] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren.
Inside the Social Network’s (Datacenter) Network. In Proc.
ACM SIGCOMM, Aug. 2015.

[24] R. Sinkhorn and K. Paul. Concerning Nonnegative Matrices
and Doubly Stochastic Matrices. Pacific J. Math., May 1967.

[25] M. Tandon, P. Cummings, and M. LeVan. Flowshop
Sequencing with Non-Permutation Schedules. Comp. & Chem.
Eng., Aug. 1991.

[26] B. Towles and W. J. Dally. Guaranteed Scheduling for
Switches with Configuration Overhead. IEEE Trans.
Networking, Oct. 2003.

[27] G. Wang, D. G. Andersen, M. Kaminsky, M. Kozuch, T. S. E.
Ng, K. Papagiannaki, M. Glick, and L. Mummert. Your Data
Center Is a Router: The Case for Reconfigurable Optical
Circuit Switched Paths. In Proc. ACM HotNets-VIII, Oct.
2009.

[28] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki,
T. S. E. Ng, M. Kozuch, and M. Ryan. c-Through: Part-time
Optics in Data Centers. In Proc. ACM SIGCOMM, Aug. 2010.

[29] B. Wu and K. L. Yeung. Minimum Delay Scheduling in
Scalable Hybrid Electronic/Optical Packet Switches. In IEEE
GLOBECOM, Nov. 2006.

[30] B. Wu, K. L. Yeung, and X. Wang. Improving Scheduling
Efficiency for High-Speed Routers with Optical Switch
Fabrics. In IEEE GLOBECOM, Nov. 2006.

[31] X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y.
Zhao, and H. Zheng. Mirror Mirror on the Ceiling: Flexible
Wireless Links for Data Centers. In Proc. ACM SIGCOMM,
Aug. 2012.

