
Sora: High Performance Software Radio
Using General Purpose Multi-core Processors

Kun Tan† Jiansong Zhang† Ji Fang ‡ He Liu § Yusheng Ye§

Shen Wang§ Yongguang Zhang† Haitao Wu† Wei Wang† Geoffrey M. Voelker\

†Microsoft Research Asia, Beijing, China § Tsinghua University, Beijing, China
‡ Beijing Jiaotong University, Beijing, China \ UCSD, La Jolla, USA

Abstract
This paper presents Sora, a fully programmable soft-

ware radio platform on commodity PC architectures.
Sora combines the performance and fidelity of hardware
SDR platforms with the programmability and flexibil-
ity of general-purpose processor (GPP) SDR platforms.
Sora uses both hardware and software techniques to ad-
dress the challenges of using PC architectures for high-
speed SDR. The Sora hardware components consist of
a radio front-end for reception and transmission, and
a radio control board for high-throughput, low-latency
data transfer between radio and host memories. Sora
makes extensive use of features of contemporary proces-
sor architectures to accelerate wireless protocol process-
ing and satisfy protocol timing requirements, including
using dedicated CPU cores, large low-latency caches to
store lookup tables, and SIMD processor extensions for
highly efficient physical layer processing on GPPs. Us-
ing the Sora platform, we have developed a demonstra-
tion radio system called SoftWiFi. SoftWiFi seamlessly
interoperates with commercial 802.11a/b/g NICs, and
achieves equivalent performance as commercial NICs at
each modulation.

1 Introduction
Software defined radio (SDR) holds the promise of fully
programmable wireless communication systems, effec-
tively supplanting current technologies which have the
lowest communication layers implemented primarily in
fixed, custom hardware circuits. Realizing the promise
of SDR in practice, however, has presented developers
with a dilemma.

Many current SDR platforms are based on either pro-
grammable hardware such as field programmable gate
arrays (FPGAs) [6, 11] or embedded digital signal pro-
cessors (DSPs) [5, 13]. Such hardware platforms can
meet the processing and timing requirements of mod-
ern high-speed wireless protocols, but programming FP-
GAs and specialized DSPs are difficult tasks. Develop-
ers have to learn how to program to each particular em-

This work was performed when Ji Fang, He Liu, Yusheng Ye,
and Shen Wang were visiting students and Geoffrey M. Voelker was a
visiting researcher at Microsoft Research Asia.

bedded architecture, often without the support of a rich
development environment of programming and debug-
ging tools. Hardware platforms can also be expensive;
the WARP [6] educational price, for example, is over
US$9,750.

In contrast, SDR platforms based on general-purpose
processor (GPP) architectures, such as commodity PCs,
have the opposite set of tradeoffs. Developers pro-
gram to a familiar architecture and environment using
sophisticated tools, and radio front-end boards for in-
terfacing with a PC are relatively inexpensive. How-
ever, since PC hardware and software have not been
designed for wireless signal processing, existing GPP-
based SDR platforms can achieve only limited perfor-
mance [1, 22]. For example, the popular GNU Radio
platform [1] achieves only a few Kbps throughput on an
8MHz channel [21], whereas modern high-speed wire-
less protocols like 802.11 support multiple Mbps data
rates on a much wider 20MHz channel [7]. These con-
straints prevent developers from using such platforms to
achieve the full fidelity of state-of-the-art wireless pro-
tocols while using standard operating systems and appli-
cations in a real environment.

In this paper we present Sora, a fully programmable
software radio platform that provides the benefits of both
SDR approaches, thereby resolving the SDR platform
dilemma for developers. With Sora, developers can im-
plement and experiment with high-speed wireless pro-
tocol stacks, e.g., IEEE 802.11a/b/g, using commodity
general-purpose PCs. Developers program in familiar
programming environments with powerful tools on stan-
dard operating systems. Software radios implemented
on Sora appear like any other network device, and users
can run unmodified applications on their software ra-
dios with the same performance as commodity hardware
wireless devices.

An implementation of high-speed wireless protocols
on general-purpose PC architectures must overcome a
number of challenges that stem from existing hardware
interfaces and software architectures. First, transferring
high-fidelity digital waveform samples into PC memory
for processing requires very high bus throughput. Ex-
isting GPP platforms like GNU Radio use USB 2.0 or

Gigabit Ethernet [1], which cannot satisfy this require-
ment for high-speed wireless protocols. Second, phys-
ical layer (PHY) signal processing has very high com-
putational requirements for generating information bits
from waveforms, and vice versa, particularly at high
modulation rates; indeed, back-of-the-envelope calcu-
lations for processing requirements on GPPs have in-
stead motivated specialized hardware approaches in the
past [17, 19]. Lastly, wireless PHY and media ac-
cess control (MAC) protocols have low-latency real-
time deadlines that must be met for correct operation.
For example, the 802.11 MAC protocol requires precise
timing control and ACK response latency on the order of
tens of microseconds. Existing software architectures on
the PC cannot consistently meet this timing requirement.

Sora uses both hardware and software techniques to
address the challenges of using PC architectures for
high-speed SDR. First, we have developed a new, in-
expensive radio control board (RCB) with a radio front-
end for transmission and reception. The RCB bridges
an RF front-end with PC memory over the high-speed
and low-latency PCIe bus [8]. With this bus standard,
the RCB can support 16.7Gbps (x8 mode) throughput
with sub-microsecond latency, which together satisfies
the throughput and timing requirements of modern wire-
less protocols while performing all digital signal pro-
cessing on host CPU and memory.

Second, to meet PHY processing requirements, Sora
makes full use of various features of widely adopted
multi-core architectures in existing GPPs. The Sora
software architecture also explicitly supports stream-
lined processing that enables components of the signal
processing pipeline to efficiently span multiple cores.
Further, we change the conventional implementation
of PHY components to extensively take advantage of
lookup tables (LUTs), trading off computation for mem-
ory. These LUTs substantially reduce the computational
requirements of PHY processing, while at the same time
taking advantage of the large, low-latency caches on
modern GPPs. Finally, Sora uses the SIMD (Single In-
struction Multiple Data) extensions in existing proces-
sors to further accelerate PHY processing. With these
optimizations, Sora can fully support the complete dig-
ital processing of 802.11b modulation rates on just one
core, and 802.11a/g on two cores.

Lastly, to meet the real-time requirements of high-
speed wireless protocols, Sora provides a new kernel ser-
vice, core dedication, which allocates processor cores
exclusively for real-time SDR tasks. We demonstrate
that it is a simple yet crucial abstraction that guarantees
the computational resources and precise timing control
necessary for SDR on a GPP.

We have developed a demonstration radio system,
SoftWiFi, based on the Sora platform. SoftWiFi cur-

rently supports the full suite of 802.11a/b/g modulation
rates, seamlessly interoperates with commercial 802.11
NICs, and achieves equivalent performance as commer-
cial NICs at each modulation.

In summary, the contributions of this paper are: (1)
the design and implementation of the Sora platform and
its high-performance PHY processing library; (2) the de-
sign and implementation of the SoftWiFi radio system
that can interoperate with commercial wireless NICs us-
ing 802.11a/b/g standards; and (3) the evaluation of Sora
and SoftWiFi on a commodity multi-core PC. To the best
of our knowledge, Sora is the first SDR platform that
enables users to develop high-speed wireless implemen-
tations, such as the IEEE 802.11a/b/g PHY and MAC,
entirely in software on a standard PC architecture.

The rest of the paper is organized as follows. Sec-
tion 2 provides background on wireless communication
systems. We then present the Sora architecture in Sec-
tion 3, and we discuss our approach for addressing the
challenges of building an SDR platform on a GPP sys-
tem in Section 4. We then describe the implementation
of the Sora platform in Section 5. Section 6 presents
the design and implementation of SoftWiFi, a fully func-
tional software WiFi radio based on Sora, and we eval-
uate its performance in Section 7. Finally, Section 9 de-
scribes related work and Section 10 concludes.

2 Background and Requirements
In this section, we briefly review the physical layer
(PHY) and media access (MAC) components of typi-
cal wireless communication systems. Although differ-
ent wireless technologies may have subtle differences
among one another, they generally follow similar de-
signs and share many common algorithms. In this sec-
tion, we use the IEEE 802.11a/b/g standards to exem-
plify characteristics of wireless PHY and MAC compo-
nents as well as the challenges of implementing them in
software.

2.1 Wireless PHY
The role of the PHY layer is to convert information bits
into a radio waveform, or vice versa. At the transmitter
side, the wireless PHY component first modulates the
message (i.e., a packet or a MAC frame) into a time se-
quence of baseband signals. Baseband signals are then
passed to the radio front-end, where they are multiplied
by a high frequency carrier and transmitted into the
wireless channel. At the receiver side, the radio front-
end detects signals in the channel and extracts the base-
band signal by removing the high-frequency carrier. The
extracted baseband signal is then fed into the receiver’s
PHY layer to be demodulated into the original message.

Advanced communication systems (e.g., IEEE
802.11a/b/g, as shown in Figure 1) contain multiple

Interleaving
Convolutional

encoder
QAM Mod IFFT GI Addition

Symbol Wave

Shaping
Scramble

To RF

Direct Sequence

Spread Spectrum
DQPSK Mod

Symbol Wave

Shaping
Scramble

(a) IEEE 802.11b 2Mbps

To RF

(b) IEEE 802.11a/g 24Mbps

Demod +

Interleaving
FFT

Viterbi

decoding
Remove GI

From RF

Descramble

DQPSK DemodDespreading Descramble

Transmitter:

Receiver:

Transmitter:

Receiver:

Samples

@32Mbps

Samples

@352Mbps
Samples

@1.4Gbps

From RF

Samples

@1.4Gbps

Decimation

Samples

@352Mbps
Samples

@32Mbps

Bits

@2Mbps

Bits

@48Mbps
Bits

@48Mbps

Samples

@512Mbps

Samples

@1.28Gbps

Samples

@640Mbps

Decimation

Samples

@384Mbps
Bits

@24Mbps

Bits

@2Mbps

Samples

@1.28Gbps

Samples

@640Mbps

Samples

@512Mbps

Samples

@384Mbps
Bits

@48Mbps

Bits

@24Mbps

Bits

@24Mbps

To MAC

From MAC

To MAC

Bits

@2Mbps

Bits

@2Mbps

Bits

@24Mbps

From MAC

Figure 1: PHY operations of IEEE 802.11a/b/g transceiver.

functional blocks in their PHY components. These
functional blocks are pipelined with one another. Data
are streamed through these blocks sequentially, but with
different data types and sizes. As illustrated in Figure 1,
different blocks may consume or produce different types
of data in different rates arranged in small data blocks.
For example, in 802.11b, the scrambler may consume
and produce one bit, while DQPSK modulation maps
each two-bit data block onto a complex symbol which
uses two 16-bit numbers to represent the in-phase and
quadrature (I/Q) components.

Each PHY block performs a fixed amount of compu-
tation on every transmitted or received bit. When the
data rate is high, e.g., 11Mbps for 802.11b and 54Mbps
for 802.11a/g, PHY processing blocks consume a sig-
nificant amount of computational power. Based on the
model in [19], we estimate that a direct implementation
of 802.11b may require 10Gops while 802.11a/g needs
at least 40Gops. These requirements are very demand-
ing for software processing in GPPs.

PHY processing blocks directly operate on the dig-
ital waveforms after modulation on the transmitter side
and before demodulation on the receiver side. Therefore,
high-throughput interfaces are needed to connect these
processing blocks as well as to connect the PHY and
radio front-end. The required throughput linearly scales
with the bandwidth of the baseband signal. For example,
the channel bandwidth is 20MHz in 802.11a. It requires
a data rate of at least 20M complex samples per second
to represent the waveform [14]. These complex samples
normally require 16-bit quantization for both I and Q
components to provide sufficient fidelity, translating into
32 bits per sample, or 640Mbps for the full 20MHz chan-
nel. Over-sampling, a technique widely used for better
performance [12], doubles the requirement to 1.28Gbps

to move data between the RF frond-end and PHY blocks
for one 802.11a channel.

2.2 Wireless MAC
The wireless channel is a resource shared by all
transceivers operating on the same spectrum. As si-
multaneously transmitting neighbors may interfere with
each other, various MAC protocols have been developed
to coordinate their transmissions in wireless networks to
avoid collisions.

Most modern MAC protocols, such as 802.11, require
timely responses to critical events. For example, 802.11
adopts a CSMA (Carrier-Sense Multiple Access) MAC
protocol to coordinate transmissions [7]. Transmitters
are required to sense the channel before starting their
transmission, and channel access is only allowed when
no energy is sensed, i.e., the channel is free. The latency
between sense and access should be as small as possible.
Otherwise, the sensing result could be outdated and inac-
curate. Another example is the link-layer retransmission
mechanisms in wireless protocols, which may require an
immediate acknowledgement (ACK) to be returned in a
limited time window.

Commercial standards like IEEE 802.11 mandate a
response latency within tens of microseconds, which is
challenging to achieve in software on a general purpose
PC with a general purpose OS.

2.3 Software Radio Requirements
Given the above discussion, we summarize the require-
ments for implementing a software radio system on a
general PC platform:

High system throughput. The interfaces between the
radio front-end and PHY as well as between some
PHY processing blocks must possess sufficiently high

Mem
RF

RF
RF

Sora

APP

Multi-core CPU

Sora Soft-Radio Stack

High throughput

low latency PCIe bus

Digital Samples

@Multiple Gbps

RCB
A/D

D/A RF
Sora

APP

APP

APP

APP

APP

Figure 2: Sora system architecture. All PHY and MAC
execute in software on a commodity multi-core CPU.

throughput to transfer high-fidelity digital waveforms.
To support a 20MHz channel for 802.11, the interfaces
must sustain at least 1.28Gbps. Conventional inter-
faces like USB 2.0 (≤ 480Mbps) or Gigabit Ethernet
(≤ 1Gbps) cannot meet this requirement [1].

Intensive computation. High-speed wireless protocols
require substantial computational power for their PHY
processing. Such computational requirements also in-
crease proportionally with communication speed. Un-
fortunately, techniques used in conventional PHY hard-
ware or embedded DSPs do not directly carry over to
GPP architectures. Thus, we require new software tech-
niques to accelerate high-speed signal processing on
GPPs. With the advent of many-core GPP architec-
tures [9], it is now reasonable to dedicate computational
power solely to signal processing. But, it is still chal-
lenging to build a software architecture to efficiently ex-
ploit the full capability of multiple cores.

Real-time enforcement. Wireless protocols have mul-
tiple real-time deadlines that need to be met. Conse-
quently, not only is processing throughput a critical re-
quirement, but the processing latency needs to meet re-
sponse deadlines. Some MAC protocols also require
precise timing control at the granularity of microseconds
to ensure certain actions occur at exactly pre-scheduled
time points. Meeting such real-time deadlines on a gen-
eral PC architecture is a non-trivial challenge: time shar-
ing operation systems may not respond to an event in a
timely manner, and bus interfaces, such as Gigabit Eth-
ernet, could introduce indefinite delays far more than a
few µs. Therefore, meeting these real-time requirements
requires new mechanisms on GPPs.

3 Architecture
We have developed a high-performance software radio
platform called Sora that addresses these challenges. It
is based on a commodity general-purpose PC architec-
ture. For flexibility and programmability, we push as
much communication functionality as possible into soft-
ware, while keeping hardware additions as simple and
generic as possible. Figure 2 illustrates the overall sys-
tem architecture.

3.1 Hardware Components

The hardware components in the Sora architecture are
a new radio control board (RCB) with an interchange-
able radio front-end (RF front-end). The radio front-
end is a hardware module that receives and/or trans-
mits radio signals through an antenna. In the Sora ar-
chitecture, the RF front-end represents the well-defined
interface between the digital and analog domains. It
contains analog-to-digital (A/D) and digital-to-analog
(D/A) converters, and necessary circuitry for radio trans-
mission. During receiving, the RF front-end acquires
an analog waveform from the antenna, possibly down-
converts it to a lower frequency, and then digitizes it into
discrete samples before transferring them to the RCB.
During transmitting, the RF front-end accepts a syn-
chronous stream of software-generated digital samples
and synthesizes the corresponding analog waveform be-
fore emitting it using the antenna. Since all signal pro-
cessing is done in software, the RF front-end design
can be rather generic. It can be implemented in a self-
contained module with a standard interface to the RCB.
Multiple wireless technologies defined on the same fre-
quency band can use the same RF front-end hardware,
and the RCB can connect to different RF front-ends de-
signed for different frequency bands.

The RCB is a new PC interface board for establish-
ing a high-throughput, low-latency path for transfer-
ring high-fidelity digital signals between the RF front-
end and PC memory. To achieve the required system
throughput discussed in Section 2.1, the RCB uses a
high-speed, low-latency bus such as PCIe [8]. With a
maximum throughput of 64Gbps (PCIe x32) and sub-
microsecond latency, it is well-suited for supporting
multiple gigabit data rates for wireless signals over a
very wide band or over many MIMO channels. Fur-
ther, the PCIe interface is now common in contemporary
commodity PCs.

Another important role of the RCB is to bridge the
synchronous data transmission at the RF front-end and
the asynchronous processing on the host CPU. The RCB
uses various buffers and queues, together with a large
on-board memory, to convert between synchronous and
asynchronous streams and to smooth out bursty trans-
fers between the RCB and host memory. The large
on-board memory further allows caching pre-computed
waveforms, adding additional flexibility for software ra-
dio processing.

Finally, the RCB provides a low-latency control path
for software to control the RF front-end hardware and
to ensure it is properly synchronized with the host CPU.
Section 5.1 describes our implementation of the RCB in
more detail.

RCB

DMA Memory

Sora PHY Lib

Real-time Support (Core

dedication)

Streamline Processing

Support

Wireless PHY

Wireless MAC

Network Layer (TCP/IP)

Sora supporting lib

RCB Manager

S
o

ra
s
o

ft
ra

d
io

s
ta

c
k

PC Bus

Kernel mode

Applications
User mode

Figure 3: Software architecture of Sora soft-radio stack.

3.2 Sora Software
Figure 3 illustrates Sora’s software architecture. The
software components in Sora provide necessary sys-
tem services and programming support for implement-
ing various wireless PHY and MAC protocols in a
general-purpose operating system. In addition to fa-
cilitating the interaction with the RCB, the Sora soft-
radio stack provides a set of techniques to greatly im-
prove the performance of PHY and MAC processing on
GPPs. To meet the processing and real-time require-
ments, these techniques make full use of various com-
mon features in existing multi-core CPU architectures,
including the extensive use of lookup tables (LUTs),
substantial data-parallelism with CPU SIMD extensions,
the efficient partitioning of streamlined processing over
multiple cores, and exclusive dedication of cores for
software radio tasks.

4 High-Performance SDR Processing
In this section we describe the software techniques used
by Sora to achieve high-performance SDR processing.

4.1 Efficient PHY processing
In a memory-for-computation tradeoff, Sora relies upon
the large-capacity, high-speed cache memory in GPPs to
accelerate PHY processing with pre-calculated lookup
tables (LUTs). Contemporary modern CPU architec-
tures, such as Intel Core 2, usually have megabytes of
L2 cache with a low (10∼20 cycles) access latency. If
we pre-calculate LUTs for a large portion of PHY algo-
rithms, we can greatly reduce the computational require-
ment for on-line processing.

For example, the soft demapper algorithm used in de-
modulation needs to calculate the confidence level of
each bit contained in an incoming symbol. This task
involves rather complex computation proportional to the

modulation density. More precisely, it conducts an ex-
tensive search for all modulation points in a constella-
tion graph and calculates a ratio between the minimum
of Euclidean distances to all points representing one and
the minimum of distances to all points representing zero.
In this case, we can pre-calculate the confidence levels
for all possible incoming symbols based on their I and
Q values, and build LUTs to directly map the input sym-
bol to confidence level. Such LUTs are not large. For
example, in 802.11a/g with a 54Mbps modulation rate
(64-QAM), the size of the LUT for the soft demapper is
only 1.5KB.

As we detail later in Section 5.2.1, more than half
of the common PHY algorithms can indeed be rewrit-
ten with LUTs, each with a speedup from 1.5x to 50x.
Since the size of each LUT is sufficiently small, the sum
of all LUTs in a processing path can easily fit in the L2
caches of contemporary GPP cores. With core dedica-
tion (Section 4.3), the possibility of cache collisions is
very small. As a result, these LUTs are almost always in
caches during PHY processing.

To accelerate PHY processing with data-level paral-
lelism, Sora heavily uses the SIMD extensions in mod-
ern GPPs, such as SSE, 3DNow!, and AltiVec. Al-
though these extensions were designed for multimedia
and graphics applications, they also match the needs of
wireless signal processing very well because many PHY
algorithms have fixed computation structures that can
easily map to large vector operations. In Appendix A,
we show an example of an optimized digital filter imple-
mentation using SSE instructions. As our measurements
later show, such SIMD extensions substantially speed up
PHY processing in Sora.

4.2 Multi-core streamline processing
Even with the above optimizations, a single CPU core
may not have sufficient capacity to meet the process-
ing requirements of high-speed wireless communication
technologies. As a result, Sora must be able to use
more than one core in a multi-core CPU for PHY pro-
cessing. This multi-core technique should also be scal-
able because the signal processing algorithms may be-
come increasingly more complex as wireless technolo-
gies progress.

As discussed in Section 2, PHY processing typically
contains several functional blocks in a pipeline. These
blocks differ in processing speed and in input/output
data rates and units. A block is only ready to execute
when it has sufficient input data from the previous block.
Therefore, a key issue is how to schedule a functional
block on multiple cores when it is ready.

One possible approach is to run multiple PHY
pipelines on different cores (Figure 4(a)), and have
the scheduler dispatch batches of digital samples to a

Core 2

Block 1

Block 1

Block 2

Block 3

S
c
h

d

Block 1 Block 2

(b)

(b)

Block 4

Core 1

Core 2

Block 3Block 4

Core 1

Core 2

In
te

r-
c
o

re
s
y
n

c
h

ro
n

iz
e

d

F
IF

O

(c)

Synchronized

FIFO

Block 2 Block 3 Block 4

Block 1 Block 2 Block 3 Block 4

Core 1

Schd

(a)

Figure 4: PHY pipeline scheduling: (a) parallel
pipelines, (b) dynamic scheduling, (c) static scheduling.

pipeline. This approach, however, does not work well
for SDR because wireless communication has strong de-
pendencies in a data stream. For example, in convolu-
tional encoding the output of each bit also depends on
the seven preceding bits in the input stream. Without
the scheduler knowing all of the data dependencies, it is
difficult to produce an efficient schedule.

An alternative scheduling approach is to have only
one pipeline and dynamically assign ready blocks to
available cores (Figure 4(b)), in a way similar to thread
scheduling in a multi-core system. Unfortunately, this
approach would introduce prohibitively high overhead.
On the one hand, any two adjacent blocks may be sched-
uled onto two different cores, thereby requiring synchro-
nized FIFO (SFIFO) communication between them. On
the other hand, most PHY processing blocks operate on
very small data items, e.g., 1–4 bytes each, and the pro-
cessing only takes a few operations (several to tens of in-
structions). Such frequent FIFO and synchronization op-
erations are not justifiable for such small computational
tasks.

Instead, Sora chooses a static scheduling scheme.
This decision is based on the observation that the sched-
ule of each block in a PHY processing pipeline is ac-
tually static: the processing pattern of previous blocks
can determine whether a subsequent block is ready or
not. Sora can thus partition the whole PHY processing
pipeline into several sub-pipelines and statically assign
them to different cores (Figure 4(c)). Within one sub-
pipeline, when a block has accumulated enough data for
the next block to be ready, it explicitly schedules the next
block. Adjacent sub-pipelines from different blocks are
still connected with an SFIFO, but the number of SFI-
FOs and their overhead are greatly reduced.

4.3 Real-time support
SDR processing is a time-critical task that requires strict
guarantees of computational resources and hard real-
time deadlines. As an alternative to relying upon the

Figure 5: Sora radio control board.

full generality of real-time operating systems, we can
achieve real-time guarantees by simply dedicating cores
to SDR processing in a multi-core system. Thus, suffi-
cient computational resources can be guaranteed without
being affected by other concurrent tasks in the system.

This approach is particularly plausible for SDR. First,
wireless communication often requires its PHY to con-
stantly monitor the channel for incoming signals. There-
fore, the PHY processing may need to be active all the
time. It is much better to always schedule this task on
the same core to minimize overhead like cache misses
or TLB flushes. Second, previous work on multi-core
OSes also suggests that isolating applications into dif-
ferent cores may have better performance compared to
symmetric scheduling, since an effective use of cache
resources and a reduction in locks can outweigh dedicat-
ing cores [10]. Moreover, a core dedication mechanism
is much easier to implement than a real-time scheduler,
sometimes even without modifying an OS kernel. For
example, we can simply raise the priority of a kernel
thread so that it is pinned on a core and it exclusively
runs until termination (Section 5.2.3).

5 Implementation
We have implemented both the hardware and software
components of Sora. This section describes our hard-
ware prototype and software stack, and presents mi-
crobenchmark evaluations of Sora components.

5.1 Hardware
We have designed and implemented the Sora radio con-
trol board (RCB) as shown in Figure 5. It contains
a Virtex-5 FPGA, a PCIe-x8 interface, and 256MB of
DDR2 SDRAM. The RCB can connect to various RF
front-ends. In our experimental prototype, we use a
third-party RF front-end, developed by Rice Univer-
sity [6], that is capable of transmitting and receiving a
20MHz channel at 2.4GHz or 5GHz.

Figure 6 illustrates the logical components of the Sora
hardware platform. The DMA and PCIe controllers in-
terface with the host and transfer digital samples be-
tween the RCB and PC memory. Sora software sends
commands and reads RCB states through RCB regis-

A/D

D/A
RF Circuit

RF Front-end
PCIE

Controller SDRAM

Controller

FIFO

FIFO
DMA

Controller

DDR

SDRAM

FPGA

RCB

PCIe

bus

Antenna

RF

Controller

Registers

Figure 6: Hardware architecture of RCB and RF.

ters. The RCB uses its on-board SDRAM as well as
small FIFOs on the FPGA chip to bridge data streams
between the CPU and RF front-end. When receiving,
digital signal samples are buffered in on-chip FIFOs and
delivered into PC memory when they fit in a DMA burst
(128 bytes). When transmitting, the large RCB memory
enables Sora software to first write the generated sam-
ples onto the RCB, and then trigger transmission with
another command to the RCB. This functionality pro-
vides flexibility to the Sora software for pre-calculating
and storing several waveforms before actually transmit-
ting them, while allowing precise control of the timing
of the waveform transmission.

While implementing Sora, we encountered a consis-
tency issue in the interaction between DMA operations
and the CPU cache system. When a DMA operation
modifies a memory location that has been cached in the
L2 cache, it does not invalidate the corresponding cache
entry. When the CPU reads that location, it can there-
fore read an incorrect value from the cache. One naive
solution is to disable cached accesses to memory regions
used for DMA, but doing so will cause a significant
degradation in memory access throughput.

We solve this problem with a smart-fetch strat-
egy, enabling Sora to maintain cache coherency with
DMA memory without drastically sacrificing through-
put. First, Sora organizes DMA memory into small slots,
whose size is a multiple of a cache line. Each slot begins
with a descriptor that contains a flag. The RCB sets the
flag after it writes a full slot of data, and cleared after
the CPU processes all data in the slot. When the CPU
moves to a new slot, it first reads its descriptor, causing
a whole cache line to be filled. If the flag is set, the data
just fetched is valid and the CPU can continue process-
ing the data. Otherwise, the RCB has not updated this
slot with new data. Then, the CPU explicitly flushes the
cache line and repeats reading the same location. This
next read refills the cache line, loading the most recent
data from memory.

5.2 Software
The Sora software is written in C, with some assem-
bly for performance-critical processing. The entire Sora

software stack is implemented on Windows XP as a net-
work device driver and it exposes a virtual Ethernet in-
terface to the upper TCP/IP stack. Since any software
radio implemented on Sora can appear as a normal net-
work device, all existing network applications can run
unmodified on it.

The Sora software currently consists of 23,325 non-
blank lines of C code. Of this total, 14,529 lines are for
system support, including driver framework, memory
management, streamline processing, etc. The remaining
8,796 lines comprise the PHY processing library.

5.2.1 PHY processing library
In the Sora PHY processing library, we extensively ex-
ploit the use of look-up tables (LUTs) and SIMD in-
structions to optimize the performance of PHY algo-
rithms. We have been able to rewrite more than half
of the PHY algorithms with LUTs. Some LUTs are
straightforward pre-calculations, others require more so-
phisticated implementations to keep the LUT size small.
For the soft-demapper example mentioned earlier, we
can greatly reduce the LUT size (e.g., 1.5KB for the
802.11a/g 54Mbps modulation) by exploiting the sym-
metry of the algorithm. In our SoftWiFi implementa-
tion described below, the overall size of the LUTs used
in 802.11a/g is around 200KB and 310KB in 802.11b,
both of which fit comfortably within the L2 caches of
commodity CPUs.

We also heavily use SIMD instructions in coding Sora
software. We currently use the SSE2 instruction set de-
signed for Intel CPUs. Since the SSE registers are 128-
bit wide while most PHY algorithms require only 8-bit
or 16-bit fixed-point operations, one SSE instruction can
perform 8 or 16 simultaneous calculations. SSE2 also
has rich instruction support for flexible data permuta-
tions, and most PHY algorithms, e.g., FFT, FIR Filter
and Viterbi, can fit naturally into this SIMD model. For
example, the Sora Viterbi decoder uses only 40 cycles to
compute the branch metric and select the shortest path
for each input. As a result, our Viterbi implementation
can handle 802.11a/g at the 54Mbps modulation with
only one 2.66GHz CPU core, whereas previous imple-
mentations relied on hardware implementations. Note
that other GPP architectures, like AMD and PowerPC,
have very similar SIMD models and instruction sets;
AMD’s Enhanced 3DNow!, for instance, includes SSE
instructions plus a set of DSP extensions. We expect
that our optimization techniques will directly apply to
these other GPP architectures as well. In Appendix A,
we show a simple example of a functional block using
SIMD instruction optimizations.

Table 1 summarizes some key PHY processing algo-
rithms we have implemented in Sora, together with the
optimization techniques we have applied. The table also

Algorithm Configuration I/O Size (bit) Optimization
Method

Computation Required (Mcycles/sec)
Input Output Conv. Impl. Sora Impl. Speedup
IEEE 802.11b

Scramble 11Mbps 8 8 LUT 96.54 10.82 8.9x
Descramble 11Mbps 8 8 LUT 95.23 5.91 16.1x
Mapping and Spreading 2Mbps, DQPSK 8 44*16*2 LUT 128.59 73.92 1.7x
CCK modulator 5Mbps, CCK 8 8*16*2 LUT 124.93 81.29 1.5x

11Mbps, CCK 8 8*16*2 LUT 203.96 110.88 1.8x
FIR Filter 16-bit I/Q, 37 taps, 22MSps 16*2*4 16*2*4 SIMD 5,780.34 616.41 9.4x
Decimation 16-bit I/Q, 4x Oversample 16*2*4*4 16*2*4 SIMD 422.45 198.72 2.1x

IEEE 802.11a
FFT/IFFT 64 points 64*16*2 64*16*2 SIMD 754.11 459.52 1.6x
Conv. Encoder 24Mbps, 1/2 rate 8 16 LUT 406.08 18.15 22.4x

48Mbps, 2/3 rate 16 24 LUT 688.55 37.21 18.5x
54Mbps, 3/4 rate 24 32 LUT 712.10 56.23 12.7x

Viterbi 24Mbps, 1/2 rate 8*16 8 SIMD+LUT 68,553.57 1,408.93 48.7x
48Mbps, 2/3 rate 8*24 16 SIMD+LUT 117,199.6 2,422.04 48.4x
54Mbps, 3/4 rate 8*32 24 SIMD+LUT 131,017.9 2,573.85 50.9x

Soft demapper 24Mbps, QAM 16 16*2 8*4 LUT 115.05 46.55 2.5x
54Mbps, QAM 64 16*2 8*6 LUT 255.86 98.75 2.4x

Scramble & Descramble 54Mbps 8 8 LUT 547.86 40.29 13.6x

Table 1: Key algorithms in IEEE 802.11b/a and their performance with conventional and Sora implementations.

compares the performance of a conventional software
implementation (e.g., a direct translation from a hard-
ware implementation) and the Sora implementation with
the LUT and SIMD optimizations.

5.2.2 Lightweight, synchronized FIFOs
Sora allows different PHY processing blocks to stream-
line across multiple cores while communicating with
one another through shared memory FIFO queues. If
two blocks are running on different cores, their access
to the shared FIFO must be synchronized. The tradi-
tional implementation of a synchronized FIFO uses a
counter to synchronize the writer and reader, which we
refer to as a counter-based FIFO (CBFIFO) and illustrate
in Figure 7(a). However, this counter is shared by two
processor cores, and every write to the variable by one
core will cause a cache miss on the other core. Since
both the producer and consumer modify this variable,
two cache misses are unavoidable for each datum. It is
also quite common to have very fine data granularity in
PHY (e.g., 4–16 bytes as summarized in Table 1). There-
fore, such cache misses will result in significant over-
head when synchronization has to be performed very
frequently (e.g., once per micro-second) for such small
pieces of data.

In Sora, we implement another synchronized FIFO
that removes the sole shared synchronization variable.
The idea is to augment each data slot in the FIFO with
a header that indicates whether the slot is empty or not.
We pad each data slot to be a multiple of a cache line.
Thus, the consumer is always chasing the producer in
the circular buffer for filled slots, as outlined in Figure
7(b). This chasing-pointer FIFO (CPFIFO) largely mit-
igates the overhead even for very fine-grained synchro-
nization. If the speed of the producer and consumer is

1 // producer:
2 void write_fifo (DATA_TYPE data) {
3 while (cnt >= q_size); // spin wait
4 q[w_tail] = data;
5 w_tail = (w_tail+1) % q_size;
6 InterlockedIncrement (cnt); // increase cnt by 1
7 }
1 // consumer:
2 void read_fifo (DATA_TYPE * pdata) {
3 while (cnt==0); // spin wait
4 * pdata = q[r_head];
5 r_head = (r_head+1) % q_size;
6 InterlockedDecrement(cnt); // decrease cnt by 1
7 }

(a)

1 // producer:
2 void write_fifo (DATA_TYPE data) {
3 while (q[w_tail].flag>0); // spin wait
4 q[w_tail].data = data;
5 q[w_tail].flag = 1; // occupied
6 w_tail = (w_tail+1) % q_size;
7 }
1 // consumer:
2 void read_fifo (DATA_TYPE * pdata) {
3 while (q[r_head].flag==0); // spin
4 *data = q[r_head].data;
5 q[r_head].flag = 0; // release
6 r_head = (r_head + 1) % q_size;
7 }

(b)

Figure 7: Pseudo-code for synchronized (a) CBFIFOs
and (b) CPFIFOs.

the same and the two pointers are separated by a partic-
ular offset (e.g., two cache lines in the Intel architecture),
no cache miss will occur during synchronized streaming
since the local cache will prefetch the following slots be-
fore the actual access. If the producer and the consumer
have different processing speeds, e.g., the reader is faster
than the writer, then eventually the consumer will wait
for the producer to release a slot. In this case, each time
the producer writes to a slot, the write will cause a cache
miss at the consumer. But the producer will not suffer

Mode Rx (Gbps) Tx (Gbps)
PCIe-x4 6.71 6.55
PCIe-x8 12.8 12.3

Table 2: DMA throughput performance of the RCB.

Method Memory Throughput
Cache Disabled 707.2Mbps

Smart-fetch 10.1Gbps

Table 3: Memory throughput.

a miss since the next free slot will be prefetched into its
local cache. Fortunately, such cache misses experienced
by the consumer will not cause significant impact on the
overall performance of the streamline processing since
the consumer is not the bottleneck element.

5.2.3 Real-time support
Sora uses exclusive threads (or ethreads) to dedicate
cores for real-time SDR tasks. Sora implements ethreads
without any modification to the kernel code. An ethread
is implemented as a kernel-mode thread, and it exploits
the processor affiliation that is commonly supported in
commodity OSes to control on which core it runs. Once
the OS has scheduled the ethread on a specified physical
core, it will raise its IRQL (interrupt request level) to a
level as high as the kernel scheduler, e.g., dispatch level
in Windows. Thus, the ethread takes control of the
core and prevents itself from being preempted by other
threads.

Running at such an IRQL, however, does not prevent
the core from responding to hardware interrupts. There-
fore, we also constrain the interrupt affiliations of all
devices attached to the host. If an ethread is running on
one core, all interrupt handlers for installed devices are
removed from the core, thus prevent the core from being
interrupted by hardware. To ensure the correct operation
of the system, Sora always ensures core zero is able to
respond to all hardware interrupts. Consequently, Sora
only allows ethreads to run on cores whose ID is greater
than zero.

5.3 Evaluation
We measure the performance of the Sora implementa-
tion with microbenchmark experiments. We perform all
measurements on a Dell XPS PC with an Intel Core 2
Quad 2.66GHz CPU (Section 7.1 details the complete
hardware configuration).

Throughput and latency. To measure PCIe through-
put, we instruct the RCB to read/write a number of de-
scriptors from/to main memory via DMA, and measure
the time taken. Table 2 summarizes the results, which
agree with the hardware specifications.

To precisely measure PCIe latency, we instruct the

0%

100%

200%

300%

400%

500%

600%

S
y
n

c
h

ro
n

iz
a
ti

o
n

 O
v
e

rh
e

a
d

Calculation Per Datum (Cycles)

CBFIFO-Same Die CBFIFO-Diff die

CPFIFO-Same Die CPFIFO-Diff die

896.86%

Figure 8: Overhead of synchronized FIFOs.

RCB to read a memory address in host memory. We
measure the time interval between issuing the request
and receiving the response data in hardware. Since the
memory read operation accesses the PCIe bus using a
round trip operation, we use half of the measured time
to estimate the one-way delay. This one-way delay is
360ns with a worst case variation of 4ns. We also con-
firm that the RCB hardware itself induces negligible de-
lay except for buffers on the data path. However, such
delay is tiny when the buffer is small. For example, the
DMA burst size is 128 bytes, which causes only 76ns
latency in PCIe-x8.

Table 3 compares measured memory throughput in
two different cases. The first row shows the read
throughput of uncacheable memory. It is only 707Mbps,
which is insufficient for 802.11 processing. The second
row shows the performance of the smart-fetch technique.
With smart-fetch, the memory throughput is a factor of
14 greater compared to the uncacheable case, and suffi-
cient for supporting high-speed protocol processing. We
note, however, that it is still slower than reading from
normal cacheable memory without having to be consis-
tent with DMA operations. This reduction is due to the
overhead of additional cache-line invalidations.

Synchronized FIFO. To measure the overhead of the
synchronized CBFIFO and CPFIFO implementations,
we process ten thousand data inputs through the FIFOs
first on one core, and then on two cores. We also vary
the number of cycles to process each datum to change
the ratio of synchronization time with processing time.
When processing with two cores, we allocate the same
computation to each core. Denote t1 and t2 as the com-
pletion times of processing on one core and two cores,
respectively. We then define the overhead of a synchro-
nized FIFO as t2−t1/2

t1/2 .
Figure 8 shows the results of this experiment. The x-

axis shows the total processing cycles required for each
datum, and the y-axis shows the overhead of the syn-

chronized FIFO. We make following observations from
these results. First, partitioning work across cores gives
different overheads depending upon whether the cores
are on the same die. Two cores on the same die share the
same L2 cache, while cores on different dies are con-
nected via a shared front-side bus. Thus, streaming data
between functional blocks across cores on the same die
has significantly less overhead than streaming between
cores on different dies.

Second, the overhead decreases as the computation
time per datum increases, as expected. When the compu-
tation per datum is very short, the communication over-
head between cores dominates. The Intel CPU requires
about 10 cycles to access its local L2 cache, and 100 cy-
cles to access a remote cache. Therefore, when there are
40 cycles per datum, the overhead is at least 10

20 = 50%
when two cores are on one die, and 100

20 = 500% when
two cores are on different dies. The CPFIFO almost
achieves this lower bound. When there is more com-
putation required per datum, however, the data transfer
can be overlapped with computation, enabling the over-
head to be hidden. Finally, the CBFIFO generally has
significantly higher overhead compared to the CPFIFO
due to the additional synchronization overhead on the
shared variable, which the CPFIFO avoids.

6 Case study: SoftWiFi
To demonstrate the use of Sora, we have developed a
fully functional WiFi transceiver on the Sora platform
called SoftWiFi. Our SoftWiFi stack supports all IEEE
802.11a/b/g modulations and can communicate seam-
lessly with commercial WiFi network cards.

Figure 9 illustrates the Sora SoftWiFi implementa-
tion. The MAC state machine (SM) is implemented
as an ethread. Since 802.11 is a half-duplex radio,
the demodulation components can run directly within
a MAC SM thread. If a single core is insufficient for
all PHY processing (e.g., 802.11a/g), the PHY process-
ing can be partitioned across two ethreads. These two
ethreads are streamlined using a CPFIFO. An additional
thread, Snd thread, modulates the outgoing frames into
waveform samples in the background. These modulated
waveforms can be pre-stored in the RCB’s memory to
facilitate transmission. The Completion thread moni-
tors the Rcv buf and notifies upper software layers of
any correctly received frames. This thread also cleans
up the snd and rcv buffers after they are used.

SoftWiFi implements the basic access mode of
802.11. The detailed MAC SM is shown in Figure 10.
Normally, the SM is in the Frame Detection (FD) state.
In that state, the RCB constantly writes samples into
the Rx buf. The SM continuously measures the aver-
age energy to determine whether the channel is clean or
whether there is an incoming frame.

Application

TCP/IP

Virtual Eth Interface

Completion_thread

Snd_buf

Snd_thread

Rcv_buf

Tx_buf

MAC_SM_Thread

Soft-WIFI Impl.

Rx_buf

PHY_Thread

RCB

Hw TX Hw RX

PHY Library
BB_Scramble; BB_QAM_Mapper;

BB_Spread; BB_FFT; ...

Ctrl

Normal Thread

eThread

Figure 9: SoftWiFi implementation.

Frame

Detection

BackOff

Tx

Rx

ACK Tx

Channel Free

BO
Pending

Tx Pending &&

Channel Free

D
et

ec
te

d

N
o

A
C

K

T
x

D
o
n
e

B
O

D
o
n
e

N
eed

AC
K

Tx Done

Figure 10: State machine of the SoftWiFi MAC.

The transmission of a frame follows the CSMA mech-
anism. When there is a pending frame, the SM first
needs to check if the energy on the channel is low. If
the channel is busy, the transmission should be deferred
and a backoff timer started. Each time the channel be-
comes free, the SM checks if any backoff time remains.
If the timer goes to zero, it transmits the frame.

SoftWiFi starts to receive a frame if it detects a high
energy in the FD state. In 802.11, it takes three steps in
the PHY layer to receive a frame. First, the PHY layer
needs to synchronize to the frame, i.e., find the start-
ing point of the frame (timing synchronization) and the
frequency offset and phase of the sample stream (car-
rier synchronization). Synchronization is usually done
by correlating the incoming samples with a pre-defined
preamble. Subsequently, the PHY layer needs to demod-
ulate the PLCP (Physical Layer Convergence Protocol)
header, which is always transmitted using a fixed low-
rate modulation mode. The PLCP header contains the
length of the frame as well as the modulation mode, pos-
sibly a higher rate, of the frame data that follows. Thus,
only after successful reception of the PLCP header will
the PHY layer know how to demodulate the remainder
of the frame.

After successfully receiving a frame, the 802.11 MAC
standard requires a station to transmit an ACK frame in
a timely manner. For example, 802.11b requires that an

ACK frame be sent with a 10µs delay. However, this
ACK requirement is quite difficult for an SDR imple-
mentation to achieve in software on a PC. Both generat-
ing and transferring the waveform across the PC bus will
cause a latency of several microseconds, and the sum
is usually larger than mandated by the standard. Fortu-
nately, an ACK frame generally has a fixed pattern. For
example, in 802.11 all data in an ACK frame is fixed
except for the sender address of the corresponding data
frame. Thus, in SoftWiFi, we can precalculate most of
an ACK frame (19 bytes), and update only the address
(10 bytes). Further, we can do it early in the process-
ing, immediately after demodulating the MAC header,
and without waiting for the end of a frame. We then pre-
store the waveform into the memory of the RCB. Thus,
the time for ACK generation and transferring can over-
lap with the demodulation of the data frame. After the
MAC SM demodulates the entire frame and validates the
CRC32 checksum, it instructs the RCB to transmit the
ACK, which has already been stored on the RCB. Thus,
the latency for ACK transmission is very small.

In rare cases when the incoming data frame is quite
small (e.g., the frame contains only a MAC header and
zero payload), then SoftWiFi cannot fully overlap ACK
generation and the DMA transfer with demodulation to
completely hide the latency. In this case, SoftWiFi may
fail to send the ACK in time. We address this problem
in SoftWiFi by maintaining a cache of previous ACKs
in the RCB. With 802.11, all data frames from one node
will have exactly the same ACK frame. Thus, we can
use pre-allocated memory slots in the RCB to store ACK
waveforms for different senders (we currently allocate
64 slots). Now, when demodulating a frame, if the ACK
frame is already in the RCB cache, the MAC SM sim-
ply instructs the RCB to transmit the pre-cached ACK.
With this scheme, SoftWiFi may be late on the first small
frame from a sender, effectively dropping the packet
from the sender’s perspective. But retransmissions, and
all subsequent transmissions, will find the appropriate
ACK waveform already stored in the RCB cache.

We have implemented and tested the full 802.11a/g/b
SoftWiFi tranceivers, which support DSSS (Direct Se-
quence Spreading: 1 and 2Mbps in 11b), CCK (Com-
plementary Code Keying: 5.5 and 11Mbps in 11b), and
OFDM (Orthogonal Frequency Division Multiplexing:
6, 9 and up to 54Mbps in 11a/g). It took one student
about one month to develop and test 11b on Sora, and an-
other student one and half months to code and test 11a/g;
these efforts also include the time for implementing the
corresponding algorithms in the PHY library.

7 Evaluations
In this section we evaluate the end-to-end applica-
tion performance delivered by Sora. Our goals are to

0

5

10

15

20

25

1M 2M 5.5M 11M 6M 24M 54M

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Modulation Mode

Sora-Commercial Commercial-Commercial

Commercial-Sora� � � � � � � � � � � � � � � �

Figure 11: Throughput of Sora when communicat-
ing with a commercial WiFi card. Sora–Commercial
presents the transmission throughput when a Sora node
sends data. Commercial–Sora presents the through-
put when a Sora node receives data. Commercial–
Commercial presents the throughput when a commercial
NIC communicates with another commercial NIC.

show that Sora interoperates seamlessly with commer-
cial 802.11 devices, and that the Sora SoftWiFi imple-
mentation achieves equivalent performance. As a result,
we show that Sora can process signals sufficiently fast to
achieve full channel utilization, and that it can satisfy all
timing requirements of the 802.11 standards with a soft-
ware implementation on a GPP. We also characterize the
CPU utilization of the software processing. In the fol-
lowing, we sometimes use the label 11a/g to present data
for both 11a/g, since 11a and 11g have exactly the same
OFDM PHY specification.

7.1 Experimental setup
The experimental setup consists of two high-end Dell
XPS PCs (Intel Core 2 Quad 2.66GHz CPU, 4GB DDR2
400MHz SDRAM, and two PCIe-16x slots) and two lap-
tops, all running Window XP. Each Dell PC equips a
Sora radio control board (RCB) with an 802.11 RF board
(Section 5) and runs Sora and the SoftWiFi implemen-
tation. Each CPU core has 32KB instruction and 32KB
data L1 caches and a 2MB L2 cache. The Dell laptops
use commercial WiFi NICs. We have used several dif-
ferent WiFi NICs in our experiments, including Netgear,
Cisco and Intel devices. All give similar results. Thus,
we present results just for the Netgear WAG511 device
(based on the Atheros AR5212 chipset).

7.2 Throughput
Figure 11 shows the transmitting and receiving through-
put of a Sora SoftWiFi node when it communicates with
a commercial WiFi NIC. In the “Sora–Commercial”
configuration, the Sora node acts as a sender and gener-
ates 1400-byte UDP frames and unicast transmits them

to a laptop equipped with a commercial NIC. In the
“Commercial–Sora” configuration, the Sora node acts
as a receiver, and the laptop generates the same work-
load. The “Commercial–Commercial” configuration
shows the throughput when both sender and receiver are
commercial NICs. In all configurations, the hosts were
at the same distance from each other and experienced
very little packet loss. Figure 11 shows the throughput
achieved for all configurations with the various modu-
lation modes in 11a/b/g. We show only three selective
rates in 11a/g for conciseness. The results are averaged
over five runs (the variance was very small).

We make a number of observations from these results.
First, the Sora SoftWiFi implementation operates seam-
lessly with commercial devices, showing that Sora Soft-
WiFi is protocol compatible. Second, Sora SoftWiFi
can achieve similar performance as commercial devices.
The throughputs for both configurations are essentially
equivalent, demonstrating that SoftWiFi (1) has the pro-
cessing capability to demodulate all incoming frames at
full modulation rates, and (2) it can meet the 802.11 tim-
ing constraints for returning ACKs within the delay win-
dow required by the standard. We note that the maximal
achievable application throughput for 802.11 is less than
80% of the PHY data rate, and the percentage decreases
as the PHY data rate increases. This limit is due to the
overhead of headers at different layers as well as the
MAC overhead to coordinate channel access (i.e., carrier
sense, ACKs, and backoff), and is a well-known prop-
erty of 802.11 performance.

7.3 CPU Utilization
What is the processing cost of onloading all digital sig-
nal processing into software on the host? Figure 12
shows the CPU utilization of a Sora SoftWiFi node to
support modulation/demodulation at the corresponding
rate. We normalize the utilization to the processing ca-
pability of one core. For receiving, higher modulation
rates require higher CPU utilization due to the increased
computational complexity of demodulating the higher
rates. We can see that one core of a contemporary multi-
core CPU can comfortably support all 11b modulation
modes. With the 11Mbps rate, Sora SoftWiFi requires
roughly 70% of the computational power of one core
for real-time SDR processing. However, 802.11a/g PHY
processing is more complex than 11b and may require
two cores for receive processing. In our software im-
plementation, the Viterbi decoder in 11a/g is the most
computationally-intensive component. It alone requires
more than 1.4 Gcycles/s at modulation rates higher than
24Mbps (Table 1). Therefore, it is natural to partition
the receive pipeline across two cores, with the Viterbi
decoder on one core and the remainder on another. With
the parallelism enabled by this streamline processing,

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1M 2M 5.5M 11M 6M 24M 54M

C
P

U
 U

ti
li

z
a

ti
o

n

Modulation Mode

11b Rx 11b Tx 11a/g Rx 11a/g Tx� � � � � � � � � � � � � � � �

Figure 12: CPU Utilization of Sora.

we reduce the delay to process one 11a/g symbol from
4.8µs to 3.9µs, meeting the requirement of the standard
(i.e. 4µs) for 54Mbps. Note that the CPU utilization is
not completely linear with the modulation rates in 11b
because the 5.5/11Mbps rates use a different modulation
scheme than with 1/2Mbps.

The CPU utilization for transmission, however, is
generally lower than the receiving case. Note that the
utilization is constant for all 11b rates. Since the trans-
mission part of 11b can be optimized effectively with
LUTs, for different rates we just use different LUTs. In
11a/g, since all samples need to pass an IFFT, the com-
putation requirements increase as the rate increases.

7.4 Detailed processing costs
The results in Figure 12 presented the overall CPU uti-
lization for a Sora SoftWiFi receiving node. As dis-
cussed in Section 6, a complete receiver has a number
of stages: frame detection, frame synchronization, and
demodulators for both the PLCP header and its data de-
pending on the modulation mode. How does CPU uti-
lization partition across these stages? Figure 13 shows
the computational cost for each component for receiv-
ing a 1400-byte UDP packet in each modulation mode;
again, we show only three representative modulation
rates for 11a/g. Frame detection (FD) has the lowest uti-
lization (11% of a 2.66GHz core for 11b and only 3.2%
for 11a/g) and is constant across all modulation modes
in each standard. Note that frame detection needs to ex-
ecute even if there is no communication since a frame
may arrive at any time. When Sora detects a frame,
it uses 29% of a core to synchronize to the start of a
frame (SYNC) for 11b, and it uses 20% of a core to syn-
chronize to an 11a/g frame. Then Sora can demodulate
the PLCP header, which is always transmitted using the
lowest modulation rate. It requires slightly less (27.5%)
computation overhead than synchronization for 11b; but
it needs much more computation (44%) for 11a. De-
modulation of the data (DATA) at the higher rates is the
most computationally expensive step in a receiver. It re-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1M 2M 5.5M 11M 6M 24M 54M

C
P

U
 U

ti
li

z
a

ti
o

n

Modulation Mode

FD SYNC PLCP HDR DATA� � � � � � � � � � � � � � � �

Figure 13: Detailed processing costs in WiFi PHY.

quires 75% of a core at 11Mbps for 11b, and the utiliza-
tion reaches exceeds one core (134%) for processing at
54Mbps in 11a/g. This result indicates that we need to
streamline the processing to at least two cores to support
this modulation.

8 Extensions

The flexibility of Sora allows us to develop interesting
extensions to current WiFi protocol.

8.1 Jumbo Frames

If the channel conditions are good, transmitting data
with larger frames can reduce the overhead of MAC/-
PHY headers, preambles and the per frame ACK. How-
ever, the maximal frame size of 802.11 is fixed at 2304
bytes. With simple modifications (changes in a few
lines), SoftWiFi can transmit and receive jumbo frames
with up to 32KB. Figure 14 shows the throughput of
sending UDP packets between two Sora SoftWiFi nodes
using the jumbo frame optimization across a range of
frame sizes (with 11b using the 11Mbps modulation
mode). When we increase the frame size from 1KB
to 6KB, the end-to-end throughput increase 39% from
5.9Mbps to 8.2Mbps. When we further increase the
frame size to 7KB, however, the throughput drops be-
cause the frame error rate also increases with the size.
So, at some point, the increasing error will offset the gain
of reducing the overhead. Note that our default commer-
cial NIC rejects frames larger than 2304 bytes, even if
those frames can be successfully demodulated.

In this experiment, we place the antennas close to each
other, clearly a best-case scenario. Our goal, though,
is not to argue that jumbo frames for 802.11 are nec-
essarily a compelling optimization. Rather, we want
to demonstrate that the full programmability offered by
Sora makes it both possible and straightforward to ex-
plore such “what if” questions on a GPP SDR platform.

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7

�� ����� ���� 	
 ���

 � � � � � � � � � � � � � � � �
Figure 14: Throughput with Jumbo Frames between two
Sora SoftWiFi nodes.

10ms 50ms 100ms
ε/σ(µs) 0.85/0.5 0.96/0.54 0.98/0.46
Outlier 0.5% 0.4% 0.4%

Table 4: Timing error of Sora in TDMA.

8.2 TDMA MAC
To evaluate the ability of Sora to precisely control the
transmission time of a frame, we implemented a simple
TDMA MAC that schedules a frame transmission at a
predefined time interval. The MAC state machine (SM)
runs in an ethread, and it continuously queries a timer
to check if the pre-defined amount of time has elapsed.
If so, the MAC SM will instruct the RCB to send out a
frame. The modification is simple and straightforward
with about 20 lines of additional code.

Since our RCB can indicate to SoftWiFi when the
transmission completes, and we know the exact size of
the frame, we can calculate the exact time when the
frame transmits. Table 4 summarizes the results with
various scheduling intervals under a heavy load, where
we copy files on the local disk, download files from
a nearby server, and playback a HD video simultane-
ously. In the Table, ε presents the average error and σ
presents the standard deviation of the error. The average
error is less than 1µs, which is sufficient for most wire-
less protocols. We also list outliers, which we define
as packet transmissions that occur later than 2µs from
the pre-defined schedule. Previous work has also imple-
mented TDMA MACs on a commodity WiFi NIC [20],
but their software architecture results in a timing error of
near 100µs.

8.3 Soft Spectrum Analyzer.
It is also easy for Sora to expose all PHY layer informa-
tion to applications. One application we have found use-
ful is a software spectrum analyzer for WiFi. We have
implemented such a simple spectrum analyzer that can
graphically display the waveform and modulation points

Figure 15: Software Spectrum Analyzer built on Sora.

in a constellation graph, as well as the demodulated re-
sults, as shown in Figure 15. Commercial spectrum ana-
lyzers may have similar functionality and wider sensing
spectrum band, but they are also more expensive.

9 Related Work
In this section we discuss various efforts to implement
software defined radio functionality and platforms.

Traditionally, device drivers have been the primary
software mechanism for changing wireless functional-
ity on general purpose computing systems. For example,
the MadWiFi drivers for cards with Atheros chipsets [3],
HostAP drivers for Prism chipsets [2], and the rtx200
drivers for RaLink chipsets [4] are popular driver suites
for experimenting with 802.11. These drivers typically
allow software to control a wide range of 802.11 man-
agement tasks and non-time-critical aspects of the MAC
protocol, and allow software to access some device hard-
ware state and exercise limited control over device oper-
ation (e.g., transmission rate or power). However, they
do not allow changes to fundamental aspects of 802.11
like the MAC packet format or any aspects of PHY.

SoftMAC goes one step further to provide a platform
for implementing customized MAC protocols using in-
expensive commodity 802.11 cards [20]. Based on the
MadWiFi drivers and associated open-source hardware
abstraction layers, SoftMAC takes advantage of features
of the Atheros chipsets to control and disable default
low-level MAC behavior. SoftMAC enables greater flex-
ibility in implementing non-standard MAC features, but
does not provide a full platform for SDR. With the sepa-
ration of functionality between driver software and hard-
ware firmware on commodity devices, time critical tasks
and PHY processing remain unchangeable on the device.

GNU Radio is a popular software toolkit for building
software radios using general purpose computing plat-

forms [1]. It is derived from an earlier system called
SpectrumWare [22]. GNU Radio consists of a software
library and a hardware platform. Developers implement
software radios by composing modular pre-compiled
components into processing graphs using python scripts.
The default GNU Radio platform is the Universal Soft-
ware Radio Peripheral (USRP), a configurable FPGA ra-
dio board that connects to the host. As with Sora, GNU
Radio performs much of the SDR processing on the host
itself. Current USRP supports USB2.0 and a new ver-
sion USRP 2.0 upgrades to Gigabit Ethernet. Such in-
terfaces, though, are not sufficient for high speed wire-
less protocols in wide bandwidth channels. Existing
GNU Radio platforms can only sustain low-speed wire-
less communication due to both the hardware constraints
as well as software processing [21]. As a consequence,
users must sacrifice radio performance for its flexibility.

The WARP hardware platform provides a flexible and
high-performance software defined radio platform [6].
Based on Xilinx FPGAs and PowerPC cores, WARP
allows full control over the PHY and MAC layers and
supports customized modulations up to 36 Mbps. A va-
riety of projects have used WARP to experiment with
new PHY and MAC features, demonstrating the impact
a high-performance SDR platform can provide. KUAR
is another SDR development platform [18]. Similar to
WARP, KUAR mainly uses Xilinx FPGAs and PowerPC
cores for signal processing. But it also contains an em-
bedded PC as the control processor host (CPH), which
has a 1.4GHz Pentium M processor. Therefore, it allows
some communication systems to be implemented com-
pletely in software on CPH. They have demonstrated
some GNU Radio applications on KUAR. Sora provides
the same flexibility and performance as hardware-based
platforms, like WARP, but it also provides a familiar
and powerful programming environment with software
portability at a lower cost.

The SODA architecture represents another point in
the SDR design space [17]. SODA is an application
domain-specific multiprocessor for SDR. It is fully pro-
grammable and targets a range of radio platforms — four
such processors can meet the computational require-
ments of 802.11a and W-CDMA. Compared to WARP
and Sora, as a single-chip implementation it is more ap-
propriate for embedded scenarios. As with WARP, de-
velopers must program to a custom architecture to im-
plement SDR functionality.

10 Conclusions
This paper presents Sora, a fully programmable software
radio platform on commodity PC architectures. Sora
combines the performance and fidelity of hardware SDR
platforms with the programmability of GPP-based SDR
platforms. Using the Sora platform, we also present the

design and implementation of SoftWiFi, a software ra-
dio implementation of the 802.11a/b/g protocols. We are
planning and implementing additional software radios,
such as 3GPP LTE (Long Term Evolution), W-CDMA,
and WiMax using the Sora platform. We have started
the implementation of 3GPP LTE in cooperation with
Beijing University of Posts and Telecommunications,
China, and we confirm the programming effort is greatly
reduced with Sora. For example, it has taken one student
only two weeks to develop the transmission half of LTE
PUSCH(Physical Uplink Shared Channel), which can be
a multi-month task on a traditional FPGA platform.

The flexibility provided by Sora makes it a convenient
platform for experimenting with novel wireless proto-
cols, such as ANC [16] or PPR [15]. Further, being able
to utilize multiple cores, Sora can scale to support even
more complex PHY algorithms, such as MIMO or SIC
(Successive Interference Cancellation) [23].

More broadly, we plan to make Sora available to the
wireless networking research community. Currently,
we are collaborating with Xi’an Jiao Tong University,
China, to design a new MIMO RF module that supports
eight channels. We are planning moderate production
of the Sora RCB and RF modules for use by other re-
searchers. The estimated cost for Sora hardware is about
$2,000 per set (RCB + one RF front-end). We also plan
to release the Sora software to the wireless network re-
search community. Our hope is that Sora can substan-
tially contribute to the adoption of SDR for wireless net-
working experimentation and innovation.

Acknowledgements
The authors would like to thank Xiongfei Cai, Ningyi
Xu and Zenlin Xia in the Platform and Devices Center
group at MSRA for their essential assistance in the hard-
ware design of the RCB. We also thank Fan Yang and
Chunyi Peng in the Wireless Networking (WN) Group
at MSRA; in particular we have learned much from their
early study on accelerating 802.11a using GPUs. We
would also like to thank all members in the WN Group
and Zheng Zhang for their support and feedback. The
authors also want to thank Songwu Lu, Frans Kaashoek,
and MSR colleagues (Victor Bahl, Ranveer Chandra,
etc.) for their comments on earlier drafts of this paper.

References
[1] Gnu radio. http://www.gnu.org/software/gnuradio/.

[2] HostAP. http://hostap.epitest.fi/.

[3] Madwifi. http://sourceforge.net/projects/madwifi.

[4] Rt2x00. http://rt2x00.serialmonkey.com.

[5] Small form factor sdr development platform.
http://www.xilinx.com/products/devkits/SFF-SDR-DP.htm.

[6] WARP: Wireless open access research platform.
http://warp.rice.edu/trac.

[7] ANSI/IEEE Std 802.11, Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specification. IEEE
Press, 1999.

[8] PCI Express Base 2.0 specification. PCI-SIG, 2007.

[9] A. Agarwal and M. Levy. Thousand-core chips: the kill rule for
multi-core. In Proceedings of the 44th Annual Conference on
Design Automations, 2007.

[10] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek,
R. Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and
Z. Zhang. Corey: an operating system for many cores. In OSDI,
2008.

[11] M. Cummings and S. Haruyama. FPGA in the software radio.
IEEE Communications Magazine, 1999.

[12] J. V. de Vegte. Fundamental of Digital Signal Processing. Cam-
bridge University Press, 2005.

[13] J. Glossner, E. Hokenek, and M. Moudgill. The sandbridge sand-
blaster communications processor. In 3rd Workshop on Applica-
tion Specific Processors, 2004.

[14] A. Goldsmith. Wireless Communication. Cambridge University
Press, 2005.

[15] K. Jamieson and H. Balakrishnan. Ppr: Partial packet recovery
for wireless networks. In Proceedings of ACM SIGCOMM 2007,
April 2007.

[16] S. Katti, S. Gollakota, and D. Katabi. Embracing wireless inter-
ference: analog network coding. In Proceedings of ACM SIG-
COMM 2007, pages 397–408. ACM Press, 2007.

[17] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, and T. Mudge.
Soda: A low-power architecture for software radio. In ISCA ’06:
Proceedings of the 33rd International Symposium on Computer
Architecture, 2006.

[18] G. J. Minden, J. B. Evans, L. Searl, D. DePardo, V. R. Patty,
R. Rajbanshi, T. Newman, Q. Chen, F. Weidling, J. Guffey,
D. Datla, B. Barker, M. Peck, B. Cordill, A. M. Wyglinski, and
A. Agah. Kuar: A flexible software-defined radio development
platform. In DySpan, 2007.

[19] J. Neel, P. Robert, and J. Reed. A formal methodology for esti-
mating the feasible processor solution space for a software radio.
In SDR ’05: Proceedings of the SDR Technical Conference and
Product Exposition, 2005.

[20] M. Neufeld, J. Fifield, C. Doerr, A. Sheth, and D. Grunwald.
Softmac - flexible wireless research platform. In HotNets 05,
2005.

[21] T. Schmid, O. Sekkat, and M. B. Srivastava. An experimen-
tal study of network performance impact of increased latency in
software defined radios. In WiNETCH07, 2007.

[22] D. L. Tennenhouse and V. G. Bose. Spectrumware-a software-
oriented approach to wireless signal processing. In MobiCom 95,
1995.

[23] S. Verdu. Multiuser Detection. Cambridge University Press,
1998.

Appendix A: SIMD example for FIR Filter
In this appendix, we show a small example of how to
use SSE instructions to optimize the implementation of a
FIR (Finite Impulse Response) filter in Sora. FIR filters
are widely used in various PHY layers. An n-tap FIR
filter is defined as

y[t] =
n−1∑

k=0

ck · x[t− k],

0 0 0 0 c0

0 0 0 c0 c1

0 0 c0 cm-3cm-4

cn-1cn-2cn-m+1cn-m cn-m+2

0cn-1cn-m+1 cn-m+2 cn-m+3

cn-1 0 0 0 0

0 c0

c0 c1 c2

c1 cm-2cm-3

cm-1cm-2

Temporary

results

Figure 16: Memory layout of the FIR coefficients.

where x[.] are the input samples, y[.] are the output sam-
ples, and ck are the filter coefficients. With SIMD in-
structions, we can process multiple samples at the same
time. For example, Intel SSE supports a 128-bit packed-
vector and each FIR sample takes 16 bits. Therefore,
we can perform m = 8 calculations simultaneously.
To facilitate SSE processing, the data layout in mem-
ory should be carefully designed. Figure 16 shows the
memory layout of the FIR coefficients. Each row forms
a packed-vector containing m components for SIMD op-
erations. The coefficient vector of the FIR filter is repli-
cated in each column in a zig-zag layout. Thus, the total
number of rows is (n + m − 1). There are also n tem-
porary variables containing the accumulated sum up to
each FIR tap for each sample.

Figure 17 shows the example code. It takes an ar-
ray of input samples, a coefficient array, and outputs the
filtered samples in an output sample buffer. The input
contains two separate sample streams, with the even and
odd indexed samples representing the I and Q samples,
respectively. The coefficient array is arranged similarly
to Figure 16, but with two sets of FIR coefficients for I
and Q samples, respectively.

Each iteration, four I and four Q samples are loaded
into an SSE register. It multiplies the data in each row
and adds the result to the corresponding temporal accu-
mulative sum variable (lines 59–68). A result is output
when all taps are calculated for the input samples (lines
18–57). When the input sample stream is long, there are
nm samples in the pipeline and m outputs are generated
in each iteration. Note that the output samples may not
be in the same order as the input — some algorithms do
not always require the output to have exactly the same
order as the input. A few shuffle instructions can be
added to place the output samples in original order if
needed.

1 int FirSSE (PSAMPLE pSrc,
2 PSAMPLE pOutput,
3 int nSize, // number of complex samples
4 PSHORT pCoff, // filter coeffs
5 int iTaps, // the highest index of tap (n-1)
6 PSAMPLE pTempBuf, // for temp value store
7)
8 {
9 _asm {

10 mov esi, pSrc;
11 mov ecx, nSize;
12 mov ebx, pOutput;
13 outerloop:
14 mov edx, pCoff;
15 mov edi, pTempBuf;
16

17 ;// load samples 4-I and 4-Q
18 movdqa xmm0, [esi];
19

20 ; // result_0
21 movdqa xmm4, xmm0;
22 pmullw xmm4, [edx];
23 paddsw xmm4, [edi];
24 ; // result_1
25 movdqa xmm5, xmm0;
26 pmullw xmm5, [edx + 16];
27 paddsw xmm5, [edi + 16];
28 ; // result_2
29 movdqa xmm6, xmm0;
30 pmullw xmm6, [edx + 32];
31 paddsw xmm6, [edi + 32];
32 ; // result_3
33 movdqa xmm7, xmm0;
34 pmullw xmm7, [edx + 48];
35 paddsw xmm7, [edi + 48];
36

37 ; // xmm4, xmm5, xmm6, xmm7 contains output
38 ; // perform shuffle and horizontal additions
39 movdqa xmm1, xmm4;
40 punpckldq xmm1, xmm6;
41 punpckhdq xmm4, xmm6;
42 paddsw xmm4, xmm1;
43

44 movdqa xmm1, xmm5;
45 punpckldq xmm1, xmm7;
46 punpckhdq xmm5, xmm7;
47 paddsw xmm5, xmm1;
48

49 movdqa xmm1, xmm4;
50 punpckldq xmm1, xmm5;
51 punpckhdq xmm4, xmm5;
52 paddsw xmm4, xmm1;
53

54 ; // output
55 ; // additional instructions may be added to
56 ; // adjust the sample orders
57 movdqa [ebx], xmm4;
58

59 ; // update temp buffers
60 mov eax, iTaps;
61 innerloop:
62 movdqa xmm1, xmm0;
63 pmullw xmm1, [edx + 64];
64 paddsw xmm1, [edi + 64];
65 movdqa [edi], xmm1;
66

67 add edx, 16;
68 add edi, 16;
69 dec eax;
70 jnz innerloop;
71

72 ;// advance to next sample group
73 add esi, 16;
74 add ebx, 16;
75 sub ecx, 4;
76 jg outerloop;
77 }
78 }

Figure 17: Pseudo-code of SSE optimized FIR Filter.

